]> AND Private Git Repository - prng_gpu.git/blob - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
autres modifs
[prng_gpu.git] / prng_gpu.tex
1 \documentclass{article}
2 %\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
3 %\documentclass[preprint,12pt]{elsarticle}
4 \usepackage[utf8]{inputenc}
5 \usepackage[T1]{fontenc}
6 \usepackage{fullpage}
7 \usepackage{fancybox}
8 \usepackage{amsmath}
9 \usepackage{amscd}
10 \usepackage{moreverb}
11 \usepackage{commath}
12 \usepackage[ruled,vlined]{algorithm2e}
13 \usepackage{listings}
14 \usepackage[standard]{ntheorem}
15 \usepackage{algorithmic}
16 \usepackage{slashbox}
17 \usepackage{ctable}
18 \usepackage{tabularx}
19 \usepackage{multirow}
20
21 %\usepackage{color}
22
23 % Pour mathds : les ensembles IR, IN, etc.
24 \usepackage{dsfont}
25
26 % Pour avoir des intervalles d'entiers
27 \usepackage{stmaryrd}
28
29 \usepackage{graphicx}
30 % Pour faire des sous-figures dans les figures
31 \usepackage{subfigure}
32
33
34 \newtheorem{notation}{Notation}
35
36 \newcommand{\X}{\mathcal{X}}
37 \newcommand{\Go}{G_{f_0}}
38 \newcommand{\B}{\mathds{B}}
39 \newcommand{\N}{\mathds{N}}
40 \newcommand{\BN}{\mathds{B}^\mathsf{N}}
41 \let\sur=\overline
42
43 %\newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
44
45 \begin{document}
46
47 \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
48
49
50 %% \author{Jacques M. Bahi}
51 %% \ead{jacques.bahi@univ-fcomte.fr}
52 %% \author{ Rapha\"{e}l Couturier \corref{cor1}}
53 %% \ead{raphael.couturier@univ-fcomte.fr}
54 %% \cortext[cor1]{Corresponding author}
55 %% \author{  Christophe Guyeux}
56 %% \ead{christophe.guyeux@univ-fcomte.fr}
57 %% \author{ Pierre-Cyrille Héam }
58 %% \ead{pierre-cyrille.heam@univ-fcomte.fr}
59
60 \author{Christophe Guyeux \and  Rapha\"{e}l Couturier \and    Pierre-Cyrille Héam \and Jacques M. Bahi\\
61 FEMTO-ST Institute, UMR  6174 CNRS,\\ University of Bourgogne Franche Comte, Belfort, France}
62
63 \maketitle
64
65
66 %\begin{frontmatter}
67 %\IEEEcompsoctitleabstractindextext{
68 \begin{abstract}
69 In this paper we present a new pseudorandom number generator (PRNG) on
70 graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
71 is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
72 implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
73 battery of tests in TestU01.  Experiments show that this PRNG can generate
74 about 20 billion of random numbers  per second on Tesla C1060 and NVidia GTX280
75 cards.
76 It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
77 secure.
78 A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is finally proposed.
79
80
81 \end{abstract}
82 %}
83 %\begin{keyword}
84 %   pseudo random number\sep parallelization\sep GPU\sep cryptography\sep chaos
85 %\end{keyword}
86 %\end{frontmatter}
87
88
89 %\IEEEdisplaynotcompsoctitleabstractindextext
90 %\IEEEpeerreviewmaketitle
91
92
93 \section{Introduction}
94
95 Randomness is of importance in many fields such as scientific simulations or cryptography. 
96 ``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
97 called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
98 process having all the characteristics of a random noise, called a truly random number
99 generator (TRNG). 
100 In this paper, we focus on reproducible generators, useful for instance in
101 Monte-Carlo based simulators or in several cryptographic schemes.
102 These domains need PRNGs that are statistically irreproachable. 
103 In some fields such as in numerical simulations, speed is a strong requirement
104 that is usually attained by using parallel architectures. In that case,
105 a recurrent problem is that a deflation of the statistical qualities is often
106 reported, when the parallelization of a good PRNG is realized.
107 This is why ad-hoc PRNGs for each possible architecture must be found to
108 achieve both speed and randomness.
109 On the other hand, speed is not the main requirement in cryptography: the most
110 important aspect is to define \emph{secure} generators able to withstand malicious
111 attacks. Roughly speaking, an attacker should not be able in practice to make 
112 the distinction between numbers obtained with the secure generator and a true random
113 sequence.  Or, in an equivalent formulation, he or she should not be
114 able (in practice) to predict the next bit of the generator, having the knowledge of all the 
115 binary digits that have been already released. ``Being able in practice'' refers here
116 to the possibility to achieve this attack in polynomial time, and to the exponential growth
117 of the difficulty of this challenge when the size of the parameters of the PRNG increases.
118
119
120 Finally, a small part of the community working in this domain focuses on a
121 third requirement, that is to define chaotic generators.
122 The main idea is to take advantage from a chaotic dynamical system to obtain a
123 generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
124 Their goal is to map a given chaotic dynamics into a sequence that seems random 
125 and unassailable due to chaos.
126 However, the chaotic maps used as patterns are defined in the real line 
127 whereas computers deal with finite precision numbers.
128 This distortion leads to a deflation of both chaotic properties and speed.
129 Furthermore, authors of such chaotic generators often claim their PRNG
130 are secure due to their chaos properties, but there is no obvious relation
131 between chaos and security as it is understood in cryptography.
132 This is why the use of chaos for PRNG still remains marginal and disputable.
133
134 The authors' opinion is that topological properties of disorder, as they are
135 properly defined in the mathematical theory of chaos, can reinforce the quality
136 of a PRNG. But they are not substitutable for security or statistical perfection.
137 Indeed, to the authors' mind, such properties can be useful in the two following situations. On the
138 one hand, a post-treatment based on a chaotic dynamical system can be applied
139 to a statistically deflective PRNG, in order to improve its statistical 
140 properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
141 On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
142 cryptographically secure one, in case where chaos can be of interest,
143 \emph{only if these last properties are not lost during
144 the proposed post-treatment}. Such an assumption is behind this research work.
145 It leads to the attempts to define a 
146 family of PRNGs that are chaotic while being fast and statistically perfect,
147 or cryptographically secure.
148 Let us finish this paragraph by noticing that, in this paper, 
149 statistical perfection refers to the ability to pass the whole 
150 {\it BigCrush} battery of tests, which is widely considered as the most
151 stringent statistical evaluation of a sequence claimed as random.
152 This battery can be found in the well-known TestU01 package~\cite{LEcuyerS07}.
153 More precisely, each time we performed a test on a PRNG, we ran it
154 twice in order to observe if all $p-$values were inside [0.01, 0.99]. In
155 fact, we observed that few $p-$values (less than ten) are sometimes
156 outside this interval but inside [0.001, 0.999], so that is why a
157 second run allows us to confirm that the values outside are not for
158 the same test. With this approach all our PRNGs pass the {\it
159   BigCrush} successfully and all $p-$values are at least once inside
160 [0.01, 0.99].
161 Chaos, for its part, refers to the well-established definition of a
162 chaotic dynamical system defined by Devaney~\cite{Devaney}.
163
164 In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
165 as a chaotic dynamical system. Such a post-treatment leads to a new category of
166 PRNGs. We have shown that proofs of Devaney's chaos can be established for this
167 family, and that the sequence obtained after this post-treatment can pass the
168 NIST~\cite{Nist10}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} batteries of tests, even if the inputted generators
169 cannot.
170 The proposition of this paper is to improve widely the speed of the formerly
171 proposed generator, without any lack of chaos or statistical properties.
172 In particular, a version of this PRNG on graphics processing units (GPU)
173 is proposed.
174 Although GPUs were initially designed  to accelerate
175 the manipulation of  images, they are nowadays commonly  used in many scientific
176 applications. Therefore,  it is important  to be able to  generate pseudorandom
177 numbers inside a GPU when it is run by a  scientific application runs in it. This remark
178 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
179 Such device
180 allows us to generate almost 20 billion of pseudorandom numbers per second.
181 Furthermore, we show that the proposed post-treatment preserves the
182 cryptographical security of the inputted PRNG, when the latter has such a 
183 property.
184 Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric
185 key encryption protocol by using the proposed method.
186
187
188 {\bf Main contributions.} In this paper a new PRNG using chaotic iteration
189 is defined. From a theoretical point of view, it is proven that it has fine
190 topological chaotic properties and that it is cryptographically secure (when
191 the initial PRNG is also cryptographically secure). From a practical point of
192 view, experiments point out a very good statistical behavior. An optimized
193 original implementation of this PRNG is also proposed and experimented.
194 Pseudorandom numbers are generated at a rate of 20GSamples/s, which is faster
195 than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better
196 statistical behavior). Experiments are also provided using 
197  the well-known Blum-Blum-Shub
198 (BBS) 
199 as the initial
200 random generator. The generation speed is significantly weaker.
201 %Note also that an original qualitative comparison between topological chaotic
202 %properties and statistical tests is also proposed.
203
204
205
206
207 The remainder of this paper  is organized as follows. In Section~\ref{section:related
208   works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
209   RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
210   and on an iteration process called ``chaotic
211 iterations'' on which the post-treatment is based. 
212 The proposed PRNG and its proof of chaos are given in  Section~\ref{sec:pseudorandom}.
213 %Section~\ref{The generation of pseudorandom sequence} illustrates the statistical
214 %improvement related to the chaotic iteration based post-treatment, for
215 %our previously released PRNGs and a new efficient 
216 %implementation on CPU.
217  Section~\ref{sec:efficient PRNG} %{sec:efficient PRNG
218 %  gpu}  
219  describes and evaluates theoretically new effective versions of
220 our pseudorandom generators,  in particular with a  GPU   implementation. 
221 Such generators are experimented in 
222 Section~\ref{sec:experiments}.
223 We show in Section~\ref{sec:security analysis} that, if the inputted
224 generator is cryptographically secure, then it is also the case of the
225 generator provided by the post-treatment.
226 A practical
227 security evaluation is also outlined in Section~\ref{sec:Practicak evaluation}.
228 Such a proof leads to the proposition of a cryptographically secure and
229 chaotic generator on GPU based on the famous Blum Blum Shub
230 in Section~\ref{sec:CSGPU} and to an improvement of the
231 Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}.
232 This research work ends by a conclusion section, in which the contribution is
233 summarized and intended future work is presented.
234
235
236
237
238 \section{Related work on GPU based PRNGs}
239 \label{section:related works}
240
241 Numerous research works on defining GPU based PRNGs have already been proposed  in the
242 literature, so that exhaustivity is impossible.
243 This is why the authors of this document only only refer to the most significant attempts 
244 in this domain, from their subjective point of view. 
245 The  quantity of pseudorandom numbers generated per second is mentioned here 
246 only when the information is given in the related work. 
247 A million numbers  per second will be simply written as
248 1MSample/s whereas a billion numbers per second is 1GSample/s.
249
250 In \cite{Pang:2008:cec}  a PRNG based on  cellular automata is defined
251 with no  requirement to a high  precision  integer   arithmetic  or to any bitwise
252 operations. Authors can   generate  about
253 3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now.
254 However, there is neither a mention of statistical tests nor any proof of
255 chaos or cryptography in this document.
256
257 In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
258 based on  Lagged Fibonacci or Hybrid  Taus.  They have  used these
259 PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
260 GPU. Performances of  the GPU versions are far better than  those obtained with a
261 CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01. 
262 However the evaluations of the proposed PRNGs are only statistical ones.
263
264
265 Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
266 PRNGs on  different computing architectures: CPU,  field-programmable gate array
267 (FPGA), massively parallel  processors, and GPU. This study is interesting, because
268 the  performance  of the  same  PRNGs on  different architectures are compared. 
269 FPGA appears as  the  fastest  and the most
270 efficient architecture, providing the fastest number of generated pseudorandom numbers
271 per joule. 
272 However, we notice that the authors can ``only'' generate between 11 and 16GSamples/s
273 with a GTX 280  GPU, which should be compared with
274 the results presented in this document.
275 We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
276 able to pass the {\it Crush} battery, which is far easier than the {\it Big Crush} one.
277
278 Lastly, Cuda  has developed  a  library for  the  generation of  pseudorandom numbers  called
279 Curand~\cite{curand11}.        Several       PRNGs        are       implemented, among
280 other things 
281 Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. The  tests reported show that
282 their  fastest version provides  15GSamples/s on  the new  Fermi C2050  card. 
283 But their PRNGs cannot pass the whole TestU01 battery (only one test has failed).
284 \newline
285 \newline
286 We can finally remark that, to the best of our knowledge, no GPU implementation has ever been proven to be chaotic, and the cryptographically secure property has surprisingly never been considered.
287
288 \section{Basic Recalls}
289 \label{section:BASIC RECALLS}
290
291 This section is devoted to basic definitions and terminologies in the fields of
292 topological chaos and chaotic iterations. We assume the reader is familiar
293 with basic notions on topology (see for instance~\cite{Devaney}).
294
295
296 \subsection{Devaney's Chaotic Dynamical Systems}
297 \label{subsec:Devaney}
298 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
299 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
300 is for the $k^{th}$ composition of a function $f$. Finally, the following
301 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
302
303
304 Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
305 \mathcal{X} \rightarrow \mathcal{X}$.
306
307 \begin{definition}
308 The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
309 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
310 \varnothing$.
311 \end{definition}
312
313 \begin{definition}
314 An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
315 if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
316 \end{definition}
317
318 \begin{definition}
319 $f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
320 points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
321 any neighborhood of $x$ contains at least one periodic point (without
322 necessarily the same period).
323 \end{definition}
324
325
326 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
327 The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
328 topologically transitive.
329 \end{definition}
330
331 The chaos property is strongly linked to the notion of ``sensitivity'', defined
332 on a metric space $(\mathcal{X},d)$ by:
333
334 \begin{definition}
335 \label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions}
336 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
337 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
338 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
339
340 The constant $\delta$ is called the \emph{constant of sensitivity} of $f$.
341 \end{definition}
342
343 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
344 chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
345 sensitive dependence on initial conditions (this property was formerly an
346 element of the definition of chaos). To sum up, quoting Devaney
347 in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
348 sensitive dependence on initial conditions. It cannot be broken down or
349 simplified into two subsystems which do not interact because of topological
350 transitivity. And in the midst of this random behavior, we nevertheless have an
351 element of regularity''. Fundamentally different behaviors are consequently
352 possible and occur in an unpredictable way.
353
354
355
356 \subsection{Chaotic Iterations}
357 \label{sec:chaotic iterations}
358
359
360 Let us consider  a \emph{system} with a finite  number $\mathsf{N} \in
361 \mathds{N}^*$ of elements  (or \emph{cells}), so that each  cell has a
362 Boolean  \emph{state}. Having $\mathsf{N}$ Boolean values for these
363  cells  leads to the definition of a particular \emph{state  of the
364 system}. A sequence whose  elements belong to $\llbracket 1;\mathsf{N}
365 \rrbracket $ is called a \emph{strategy}. The set of all strategies is
366 denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
367
368 \begin{definition}
369 \label{Def:chaotic iterations}
370 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
371 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
372 a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  ``strategy''.  The  so-called
373 \emph{chaotic      iterations}     are     defined      by     $x^0\in
374 \mathds{B}^{\mathsf{N}}$ and
375 \begin{equation}
376 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
377 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
378 \begin{array}{ll}
379   x_i^{n-1} &  \text{ if  }S^n\neq i \\
380   \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
381 \end{array}\right.
382 \end{equation}
383 \end{definition}
384
385 In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
386 \textquotedblleft  iterated\textquotedblright .  Note  that in  a more
387 general  formulation,  $S^n$  can   be  a  subset  of  components  and
388 $\left(f(x^{n-1})\right)_{S^{n}}$      can     be      replaced     by
389 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
390 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
391 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
392 priori} no link with the mathematical theory of chaos, presented above.
393
394
395 Let us now recall how to define a suitable metric space where chaotic iterations
396 are continuous. For further explanations, see, e.g., \cite{guyeux10}.
397
398 Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
399 (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function
400 $F_{f}:  \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} 
401 \longrightarrow  \mathds{B}^{\mathsf{N}}$
402 \begin{equation*}
403 \begin{array}{lrll}
404 & (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta
405 (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
406 \end{array}%
407 \end{equation*}%
408 \noindent where + and . are the Boolean addition and product operations.
409 Consider the phase space:
410 \begin{equation}
411 \mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
412 \mathds{B}^\mathsf{N},
413 \end{equation}
414 \noindent and the map defined on $\mathcal{X}$:
415 \begin{equation}
416 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
417 \end{equation}
418 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
419 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
420 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
421 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
422 1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
423 Definition \ref{Def:chaotic iterations} can be described by the following iterations:
424 \begin{equation}
425 \left\{
426 \begin{array}{l}
427 X^0 \in \mathcal{X} \\
428 X^{k+1}=G_{f}(X^k).%
429 \end{array}%
430 \right.
431 \end{equation}%
432
433 With this formulation, a shift function appears as a component of chaotic
434 iterations. The shift function is a famous example of a chaotic
435 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
436 chaotic. 
437 To study this claim, a new distance between two points $X = (S,E), Y =
438 (\check{S},\check{E})\in
439 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
440 \begin{equation}
441 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
442 \end{equation}
443 \noindent where
444 \begin{equation}
445 \left\{
446 \begin{array}{lll}
447 \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
448 }\delta (E_{k},\check{E}_{k})}, \\
449 \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
450 \sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
451 \end{array}%
452 \right.
453 \end{equation}
454
455
456 This new distance has been introduced to satisfy the following requirements.
457 \begin{itemize}
458 \item When the number of different cells between two systems is increasing, then
459 their distance should increase too.
460 \item In addition, if two systems present the same cells and their respective
461 strategies start with the same terms, then the distance between these two points
462 must be small because the evolution of the two systems will be the same for a
463 while. Indeed, both dynamical systems start with the same initial condition,
464 use the same update function, and as strategies are the same for a while, furthermore
465 updated components are the same as well.
466 \end{itemize}
467 The distance presented above follows these recommendations. Indeed, if the floor
468 value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
469 differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
470 measure of the differences between strategies $S$ and $\check{S}$. More
471 precisely, this floating part is less than $10^{-k}$ if and only if the first
472 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
473 nonzero, then the $k^{th}$ terms of the two strategies are different.
474 The impact of this choice for a distance will be investigated at the end of the document.
475
476 Finally, it has been established in \cite{guyeux10} that,
477
478 \begin{proposition}
479 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
480 the metric space $(\mathcal{X},d)$.
481 \end{proposition}
482
483 The chaotic property of $G_f$ has been firstly established for the vectorial
484 Boolean negation $f_0(x_1,\hdots, x_\mathsf{N}) =  (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
485 introduced the notion of asynchronous iteration graph recalled bellow.
486
487 Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
488 {\emph{asynchronous iteration graph}} associated with $f$ is the
489 directed graph $\Gamma(f)$ defined by: the set of vertices is
490 $\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and 
491 $i\in \llbracket1;\mathsf{N}\rrbracket$,
492 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
493 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
494 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
495 strategy $s$ such that the parallel iteration of $G_f$ from the
496 initial point $(s,x)$ reaches the point $x'$.
497 We have then proven in \cite{bcgr11:ip} that,
498
499
500 \begin{theorem}
501 \label{Th:Caractérisation   des   IC   chaotiques}  
502 Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (according to  Devaney) 
503 if and only if $\Gamma(f)$ is strongly connected.
504 \end{theorem}
505
506 Finally, we have established in \cite{bcgr11:ip} that,
507 \begin{theorem}
508   Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
509   iteration graph, $\check{M}$ its adjacency
510   matrix and $M$
511   a $n\times n$ matrix defined by 
512   $
513   M_{ij} = \frac{1}{n}\check{M}_{ij}$ %\textrm{ 
514   if $i \neq j$ and  
515   $M_{ii} = 1 - \frac{1}{n} \sum\limits_{j=1, j\neq i}^n \check{M}_{ij}$ otherwise.
516   
517   If $\Gamma(f)$ is strongly connected, then 
518   the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
519   a law that tends to the uniform distribution 
520   if and only if $M$ is a double stochastic matrix.
521 \end{theorem} 
522
523
524 These results of chaos and uniform distribution have led us to study the possibility of building a
525 pseudorandom number generator (PRNG) based on the chaotic iterations. 
526 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
527 \times \mathds{B}^\mathsf{N}$, is built from Boolean networks $f : \mathds{B}^\mathsf{N}
528 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
529 during implementations (due to the discrete nature of $f$). Indeed, it is as if
530 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
531 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
532 Let us finally remark that the vectorial negation satisfies the hypotheses of both theorems above.
533
534 \section{Application to Pseudorandomness}
535 \label{sec:pseudorandom}
536
537 \subsection{A First Pseudorandom Number Generator}
538
539 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
540 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
541 leading thus to a new PRNG that 
542 should improve the statistical properties of each
543 generator taken alone. 
544 Furthermore, the generator obtained in this way possesses various chaos properties that none of the generators used as  input present.
545
546
547
548 \begin{algorithm}[h!]
549 \begin{small}
550 \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
551 ($n$ bits)}
552 \KwOut{a configuration $x$ ($n$ bits)}
553 $x\leftarrow x^0$\;
554 $k\leftarrow b + PRNG_1(b)$\;
555 \For{$i=0,\dots,k$}
556 {
557 $s\leftarrow{PRNG_2(n)}$\;
558 $x\leftarrow{F_f(s,x)}$\;
559 }
560 return $x$\;
561 \end{small}
562 \caption{An arbitrary round of $Old~ CI~ PRNG_f(PRNG_1,PRNG_2)$}
563 \label{CI Algorithm}
564 \end{algorithm}
565
566
567
568
569 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
570 It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques};
571 an integer $b$, ensuring that the number of executed iterations
572 between two outputs is at least $b$
573 and at most $2b+1$; and an initial configuration $x^0$.
574 It returns the new generated configuration $x$.  Internally, it embeds two
575 inputted generators $PRNG_i(k), i=1,2$,
576  which must return integers
577 uniformly distributed
578 into $\llbracket 1 ; k \rrbracket$.
579 For instance, these PRNGs can be the \textit{XORshift}~\cite{Marsaglia2003},
580 being a category of very fast PRNGs designed by George Marsaglia
581 that repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
582 with a bit shifted version of it. Such a PRNG, which has a period of
583 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. 
584 This XORshift, or any other reasonable PRNG, is used
585 in our own generator to compute both the number of iterations between two
586 outputs (provided by $PRNG_1$) and the strategy elements ($PRNG_2$).
587
588 %This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones.
589
590
591 \begin{algorithm}[h!]
592 \begin{small}
593 \KwIn{the internal configuration $z$ (a 32-bit word)}
594 \KwOut{$y$ (a 32-bit word)}
595 $z\leftarrow{z\oplus{(z\ll13)}}$\;
596 $z\leftarrow{z\oplus{(z\gg17)}}$\;
597 $z\leftarrow{z\oplus{(z\ll5)}}$\;
598 $y\leftarrow{z}$\;
599 return $y$\;
600 \end{small}
601 \caption{An arbitrary round of \textit{XORshift} algorithm}
602 \label{XORshift}
603 \end{algorithm}
604
605
606 \subsection{A ``New CI PRNG''}
607
608 In order to make the Old CI PRNG usable in practice, we have proposed 
609 an adapted version of the chaotic iteration based generator in~\cite{bg10:ip}.
610 In this ``New CI PRNG'', we prevent a given bit from changing twice between two outputs.
611 This new generator is designed by the following process. 
612
613 First of all, some chaotic iterations have to be done to generate a sequence 
614 $\left(x^n\right)_{n\in\mathds{N}} \in \left(\mathds{B}^{32}\right)^\mathds{N}$ 
615 of Boolean vectors, which are the successive states of the iterated system. 
616 Some of these vectors will be randomly extracted and our pseudorandom bit 
617 flow will be constituted by their components. Such chaotic iterations are 
618 realized as follows. Initial state $x^0 \in \mathds{B}^{32}$ is a Boolean 
619 vector taken as a seed and chaotic strategy $\left(S^n\right)_{n\in\mathds{N}}\in 
620 \llbracket 1, 32 \rrbracket^\mathds{N}$ is
621 an \emph{irregular decimation} of $PRNG_2$ sequence, as described in 
622 Algorithm~\ref{Chaotic iteration1}.
623
624 Then, at each iteration, only the $S^n$-th component of state $x^n$ is 
625 updated, as follows: $x_i^n = x_i^{n-1}$ if $i \neq S^n$, else $x_i^n = \overline{x_i^{n-1}}$.
626 Such a procedure is equivalent to achieving chaotic iterations with
627 the Boolean vectorial negation $f_0$ and some well-chosen strategies.
628 Finally, some $x^n$ are selected
629 by a sequence $m^n$ as the pseudorandom bit sequence of our generator.
630 $(m^n)_{n \in \mathds{N}} \in \mathcal{M}^\mathds{N}$ is computed from $PRNG_1$, where $\mathcal{M}\subset \mathds{N}^*$ is a finite nonempty set of integers.
631
632 The basic design procedure of the New CI generator is summarized in Algorithm~\ref{Chaotic iteration1}.
633 The internal state is $x$, the output state is $r$. $a$ and $b$ are those computed by the two input
634 PRNGs. Lastly, the value $g(a)$ is an integer defined as in Eq.~\ref{Formula}.
635 This function must be chosen such that the outputs of the resulted PRNG are uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$. Function of \eqref{Formula} achieves this
636 goal (other candidates and more information can be found in ~\cite{bg10:ip}).
637
638 \begin{equation}
639 \label{Formula}
640 m^n = g(y^n)=
641 \left\{
642 \begin{array}{l}
643 0 \text{ if }0 \leqslant{y^n}<{C^0_{32}},\\
644 1 \text{ if }{C^0_{32}} \leqslant{y^n}<\sum_{i=0}^1{C^i_{32}},\\
645 2 \text{ if }\sum_{i=0}^1{C^i_{32}} \leqslant{y^n}<\sum_{i=0}^2{C^i_{32}},\\
646 \vdots~~~~~ ~~\vdots~~~ ~~~~\\
647 N \text{ if }\sum_{i=0}^{N-1}{C^i_{32}}\leqslant{y^n}<1.\\
648 \end{array}
649 \right.
650 \end{equation}
651
652 \begin{algorithm}
653 \textbf{Input:} the internal state $x$ (32 bits)\\
654 \textbf{Output:} a state $r$ of 32 bits
655 \begin{algorithmic}[1]
656 \FOR{$i=0,\dots,N$}
657 {
658 \STATE$d_i\leftarrow{0}$\;
659 }
660 \ENDFOR
661 \STATE$a\leftarrow{PRNG_1()}$\;
662 \STATE$k\leftarrow{g(a)}$\;
663 \WHILE{$i=0,\dots,k$}
664
665 \STATE$b\leftarrow{PRNG_2()~mod~\mathsf{N}}$\;
666 \STATE$S\leftarrow{b}$\;
667     \IF{$d_S=0$}
668     {
669 \STATE      $x_S\leftarrow{ \overline{x_S}}$\;
670 \STATE      $d_S\leftarrow{1}$\;
671
672     }
673     \ELSIF{$d_S=1$}
674     {
675 \STATE      $k\leftarrow{ k+1}$\;
676     }\ENDIF
677 \ENDWHILE\\
678 \STATE $r\leftarrow{x}$\;
679 \STATE return $r$\;
680 \medskip
681 \caption{An arbitrary round of the new CI generator}
682 \label{Chaotic iteration1}
683 \end{algorithmic}
684 \end{algorithm}
685
686
687 We have shown in~\cite{bfg12a:ip} that the use of chaotic iterations 
688 implies an improvement of the statistical properties for all the
689 inputted defective generators we have investigated.
690 For instance, when considering the TestU01 battery with its 588 tests, we obtained 261 
691 failures for a PRNG based on the logistic map alone, and 
692 this number of failures falls below 138 in the Old CI(Logistic,Logistic) generator.
693 In the XORshift case (146 failures when considering it alone), the results are more impressive,
694 as the chaotic iterations post-treatment  fails with only 8 tests of the TestU01 battery. 
695 Further investigations have been systematically realized in \cite{bfg12a:ip}
696 using a large set of inputted defective PRNGs, the three most used batteries of
697 tests (DieHARD, NIST, and TestU01), and for all the versions of generators we have proposed.
698 In all situations, an obvious improvement of the statistical behavior has
699 been obtained, reinforcing the impression that chaos leads to statistical 
700 enhancement~\cite{bfg12a:ip}.
701
702 \subsection{Improving the Speed of the Former Generator}
703
704 Instead of updating only one cell at each iteration, we now propose to choose a
705 subset of components and to update them together, for speed improvement. Such a proposition leads 
706 to a kind of merger of the two sequences used in Algorithms 
707 \ref{CI Algorithm} and \ref{Chaotic iteration1}. When the updating function is the vectorial negation,
708 this algorithm can be rewritten as follows:
709
710 \begin{equation}
711 \left\{
712 \begin{array}{l}
713 x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
714 \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
715 \end{array}
716 \right.
717 \label{equation Oplus}
718 \end{equation}
719 where $\oplus$ is for the bitwise exclusive or between two integers. 
720 This rewriting can be understood as follows. The $n-$th term $S^n$ of the
721 sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
722 the list of cells to update in the state $x^n$ of the system (represented
723 as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th 
724 component of this state (a binary digit) changes if and only if the $k-$th 
725 digit in the binary decomposition of $S^n$ is 1.
726 Obviously, when $S$ is periodic of period $p$, then $x$ is periodic too of
727 period either $p$ or $2p$, depending on the fact that, after $p$ iterations,
728 the state of the system may or not be the same as before these iterations.
729
730 The single basic component presented in Eq.~\ref{equation Oplus} is of 
731 ordinary use as a good elementary brick in various PRNGs. It corresponds
732 to the following discrete dynamical system in chaotic iterations:
733
734 \begin{equation}
735 \forall    n\in     \mathds{N}^{\ast     },    \forall     i\in
736 \llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
737 \begin{array}{ll}
738   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
739   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
740 \end{array}\right.
741 \label{eq:generalIC}
742 \end{equation}
743 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
744 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
745 $k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
746 decomposition of $S^n$ is 1. Such chaotic iterations are more general
747 than the ones presented in Definition \ref{Def:chaotic iterations} because, instead of updating only one term at each iteration,
748 we select a subset of components to change.
749
750
751 Obviously, replacing the previous CI PRNG Algorithms by 
752 Equation~\ref{equation Oplus}, which is possible when the iteration function is
753 the vectorial negation, leads to a speed improvement 
754 (the resulting generator will be referred as ``Xor CI PRNG''
755 in what follows).
756 However, proofs
757 of chaos obtained in~\cite{bg10:ij} have been established
758 only for chaotic iterations of the form presented in Definition 
759 \ref{Def:chaotic iterations}. The question is now to determine whether the
760 use of more general chaotic iterations to generate pseudorandom numbers 
761 faster, does not deflate their topological chaos properties.
762
763 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
764 \label{deuxième def}
765 Let us consider the discrete dynamical systems in chaotic iterations having 
766 the general form: $\forall    n\in     \mathds{N}^{\ast     }$, $  \forall     i\in
767 \llbracket1;\mathsf{N}\rrbracket $,
768
769 \begin{equation}
770   x_i^n=\left\{
771 \begin{array}{ll}
772   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
773   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
774 \end{array}\right.
775 \label{general CIs}
776 \end{equation}
777
778 In other words, at the $n^{th}$ iteration, only the cells whose id is
779 contained into the set $S^{n}$ are iterated.
780
781 Let us now rewrite these general chaotic iterations as usual discrete dynamical
782 system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
783 is required in order to study the topological behavior of the system.
784
785 Let us introduce the following function:
786 \begin{equation}
787 \begin{array}{cccc}
788  \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
789          & (i,X) & \longmapsto  & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X,  \end{array}\right.
790 \end{array} 
791 \end{equation}
792 where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
793
794 Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
795 $F_{f}:  \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} 
796 \longrightarrow \mathds{B}^{\mathsf{N}}$
797 \begin{equation*}
798 \begin{array}{rll}
799  (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
800 \end{array}%
801 \end{equation*}%
802 where + and . are the Boolean addition and product operations, and $\overline{x}$ 
803 is the negation of the Boolean $x$.
804 Consider the phase space:
805 \begin{equation}
806 \mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
807 \mathds{B}^\mathsf{N},
808 \end{equation}
809 \noindent and the map defined on $\mathcal{X}$:
810 \begin{equation}
811 G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant...
812 \end{equation}
813 \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
814 (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
815 \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function} 
816 $i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$. 
817 Then the general chaotic iterations defined in Equation \ref{general CIs} can 
818 be described by the following discrete dynamical system:
819 \begin{equation}
820 \left\{
821 \begin{array}{l}
822 X^0 \in \mathcal{X} \\
823 X^{k+1}=G_{f}(X^k).%
824 \end{array}%
825 \right.
826 \end{equation}%
827
828 Once more, a shift function appears as a component of these general chaotic 
829 iterations. 
830
831 To study the Devaney's chaos property, a distance between two points 
832 $X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
833 Let us introduce:
834 \begin{equation}
835 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
836 \label{nouveau d}
837 \end{equation}
838 \noindent where $ \displaystyle{d_{e}(E,\check{E})} = \displaystyle{\sum_{k=1}^{\mathsf{N}%
839  }\delta (E_{k},\check{E}_{k})}$  is once more the Hamming distance, and
840 $  \displaystyle{d_{s}(S,\check{S})}  =  \displaystyle{\dfrac{9}{\mathsf{N}}%
841  \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}$,
842 %%RAPH : ici, j'ai supprimé tous les sauts à la ligne
843 %% \begin{equation}
844 %% \left\{
845 %% \begin{array}{lll}
846 %% \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
847 %% }\delta (E_{k},\check{E}_{k})} \textrm{ is once more the Hamming distance}, \\
848 %% \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
849 %% \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
850 %% \end{array}%
851 %% \right.
852 %% \end{equation}
853 where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
854 $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
855
856
857 \begin{proposition}
858 The function $d$ defined in Eq.~\ref{nouveau d} is a metric on $\mathcal{X}$.
859 \end{proposition}
860
861 \begin{proof}
862  $d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
863 too, thus $d$, being the sum of two distances, will also be a distance.
864  \begin{itemize}
865 \item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then 
866 $d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then 
867 $\forall k \in \mathds{N}, |S^k\Delta {S}^k|=0$, and so $\forall k, S^k=\check{S}^k$.
868  \item $d_s$ is symmetric 
869 ($d_s(S,\check{S})=d_s(\check{S},S)$) due to the commutative property
870 of the symmetric difference. 
871 \item Finally, $|S \Delta S''| = |(S \Delta \varnothing) \Delta S''|= |S \Delta (S'\Delta S') \Delta S''|= |(S \Delta S') \Delta (S' \Delta S'')|\leqslant |S \Delta S'| + |S' \Delta S''|$, 
872 and so for all subsets $S,S',$ and $S''$ of $\llbracket 1, \mathsf{N} \rrbracket$, 
873 we have $d_s(S,S'') \leqslant d_e(S,S')+d_s(S',S'')$, and the triangle
874 inequality is obtained.
875  \end{itemize}
876 \end{proof}
877
878
879 Before being able to study the topological behavior of the general 
880 chaotic iterations, we must first establish that:
881
882 \begin{proposition}
883  For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on 
884 $\left( \mathcal{X},d\right)$.
885 \end{proposition}
886
887
888 \begin{proof}
889 We use the sequential continuity.
890 Let $(S^n,E^n)_{n\in \mathds{N}}$ be a sequence of the phase space $%
891 \mathcal{X}$, which converges to $(S,E)$. We will prove that $\left(
892 G_{f}(S^n,E^n)\right) _{n\in \mathds{N}}$ converges to $\left(
893 G_{f}(S,E)\right) $. Let us remark that for all $n$, $S^n$ is a strategy,
894 thus, we consider a sequence of strategies (\emph{i.e.}, a sequence of
895 sequences).\newline
896 As $d((S^n,E^n);(S,E))$ converges to 0, each distance $d_{e}(E^n,E)$ and $d_{s}(S^n,S)$ converges
897 to 0. But $d_{e}(E^n,E)$ is an integer, so $\exists n_{0}\in \mathds{N},$ $%
898 d_{e}(E^n,E)=0$ for any $n\geqslant n_{0}$.\newline
899 In other words, there exists a threshold $n_{0}\in \mathds{N}$ after which no
900 cell will change its state:
901 $\exists n_{0}\in \mathds{N},n\geqslant n_{0}\Rightarrow E^n = E.$
902
903 In addition, $d_{s}(S^n,S)\longrightarrow 0,$ so $\exists n_{1}\in %
904 \mathds{N},d_{s}(S^n,S)<10^{-1}$ for all indexes greater than or equal to $%
905 n_{1}$. This means that for $n\geqslant n_{1}$, all the $S^n$ have the same
906 first term, which is $S^0$: $\forall n\geqslant n_{1},S_0^n=S_0.$
907
908 Thus, after the $max(n_{0},n_{1})^{th}$ term, states of $E^n$ and $E$ are
909 identical and strategies $S^n$ and $S$ start with the same first term.\newline
910 Consequently, states of $G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are equal,
911 so, after the $max(n_0, n_1)^{th}$ term, the distance $d$ between these two points is strictly less than 1.\newline
912 \noindent We now prove that the distance between $\left(
913 G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
914 0. Let $\varepsilon >0$. \medskip
915 \begin{itemize}
916 \item If $\varepsilon \geqslant 1$, we see that the distance
917 between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
918 strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
919 \medskip
920 \item If $\varepsilon <1$, then $\exists k\in \mathds{N},10^{-k}\geqslant
921 \varepsilon > 10^{-(k+1)}$. But $d_{s}(S^n,S)$ converges to 0, so
922 \begin{equation*}
923 \exists n_{2}\in \mathds{N},\forall n\geqslant
924 n_{2},d_{s}(S^n,S)<10^{-(k+2)},
925 \end{equation*}%
926 thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal.
927 \end{itemize}
928 \noindent As a consequence, the $k+1$ first entries of the strategies of $%
929 G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
930 the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
931 10^{-(k+1)}\leqslant \varepsilon $.
932
933 In conclusion,
934 %%RAPH : ici j'ai rajouté une ligne
935 %%TOF : ici j'ai rajouté un commentaire
936 %%TOF : ici aussi
937 $
938 \forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}
939 ,$ $\forall n\geqslant N_{0},$
940 $ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
941 \leqslant \varepsilon .
942 $
943 $G_{f}$ is consequently continuous.
944 \end{proof}
945
946
947 It is now possible to study the topological behavior of the general chaotic
948 iterations. We will prove that,
949
950 \begin{theorem}
951 \label{t:chaos des general}
952  The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
953 the Devaney's property of chaos.
954 \end{theorem}
955
956 Let us firstly prove the following lemma.
957
958 \begin{lemma}[Strong transitivity]
959 \label{strongTrans}
960  For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can 
961 find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
962 \end{lemma}
963
964 \begin{proof}
965  Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. 
966 Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, 
967 are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define 
968 $\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
969 We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
970 that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
971 the form $(S',E')$ where $E'=E$ and $S'$ starts with 
972 $(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
973 \begin{itemize}
974  \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
975  \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
976 \end{itemize}
977 Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, 
978 where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
979 claimed in the lemma.
980 \end{proof}
981
982 We can now prove Theorem~\ref{t:chaos des general}.
983
984 \begin{proof}[Theorem~\ref{t:chaos des general}]
985 Firstly, strong transitivity implies transitivity.
986
987 Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
988 prove that $G_f$ is regular, it is sufficient to prove that
989 there exists a strategy $\tilde S$ such that the distance between
990 $(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
991 $(\tilde S,E)$ is a periodic point.
992
993 Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
994 configuration that we obtain from $(S,E)$ after $t_1$ iterations of
995 $G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ 
996 and $t_2\in\mathds{N}$ such
997 that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
998
999 Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
1000 of $S$ and the first $t_2$ terms of $S'$: 
1001 %%RAPH : j'ai coupé la ligne en 2
1002 $$\tilde
1003 S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,$$$$\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
1004 is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
1005 $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
1006 point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
1007 have $d((S,E),(\tilde S,E))<\epsilon$.
1008 \end{proof}
1009
1010
1011 %\section{Statistical Improvements Using Chaotic Iterations}
1012
1013 %\label{The generation of pseudorandom sequence}
1014
1015
1016 %Let us now explain why we have reasonable ground to believe that chaos 
1017 %can improve statistical properties.
1018 %We will show in this section that chaotic properties as defined in the
1019 %mathematical theory of chaos are related to some statistical tests that can be found
1020 %in the NIST battery. Furthermore, we will check that, when mixing defective PRNGs with
1021 %chaotic iterations, the new generator presents better statistical properties
1022 %(this section summarizes and extends the work of~\cite{bfg12a:ip}).
1023
1024
1025
1026 %\subsection{Qualitative relations between topological properties and statistical tests}
1027
1028
1029 %There are various relations between topological properties that describe an unpredictable behavior for a discrete 
1030 %dynamical system on the one
1031 %hand, and statistical tests to check the randomness of a numerical sequence
1032 %on the other hand. These two mathematical disciplines follow a similar 
1033 %objective in case of a recurrent sequence (to characterize an intrinsically complicated behavior for a
1034 %recurrent sequence), with two different but complementary approaches.
1035 %It is true that the following illustrative links give only qualitative arguments, 
1036 %and proofs should be provided later to make such arguments irrefutable. However 
1037 %they give a first understanding of the reason why we think that chaotic properties should tend
1038 %to improve the statistical quality of PRNGs.
1039 %%
1040 %Let us now list some of these relations between topological properties defined in the mathematical
1041 %theory of chaos and tests embedded into the NIST battery. %Such relations need to be further 
1042 %%investigated, but they presently give a first illustration of a trend to search similar properties in the 
1043 %%two following fields: mathematical chaos and statistics.
1044
1045
1046 %\begin{itemize}
1047 %    \item \textbf{Regularity}. As stated in Section~\ref{subsec:Devaney}, a chaotic dynamical system must 
1048 %have an element of regularity. Depending on the chosen definition of chaos, this element can be the existence of
1049 %a dense orbit, the density of periodic points, etc. The key idea is that a dynamical system with no periodicity
1050 %is not as chaotic as a system having periodic orbits: in the first situation, we can predict something and gain a
1051 %knowledge about the behavior of the system, that is, it never enters into a loop. A similar importance for periodicity is emphasized in
1052 %the two following NIST tests~\cite{Nist10}:
1053 %    \begin{itemize}
1054 %        \item \textbf{Non-overlapping Template Matching Test}. Detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
1055 %        \item \textbf{Discrete Fourier Transform (Spectral) Test}. Detect periodic features (i.e., repetitive patterns that are close one to another) in the tested sequence that would indicate a deviation from the assumption of randomness.
1056 %    \end{itemize}
1057
1058 %\item \textbf{Transitivity}. This topological property previously introduced  states that the dynamical system is intrinsically complicated: it cannot be simplified into 
1059 %two subsystems that do not interact, as we can find in any neighborhood of any point another point whose orbit visits the whole phase space. 
1060 %This focus on the places visited by the orbits of the dynamical system takes various nonequivalent formulations in the mathematical theory
1061 %of chaos, namely: transitivity, strong transitivity, total transitivity, topological mixing, and so on~\cite{bg10:ij}. A similar attention 
1062 %is brought on the states visited during a random walk in the two tests below~\cite{Nist10}:
1063 %    \begin{itemize}
1064 %        \item \textbf{Random Excursions Variant Test}. Detect deviations from the expected number of visits to various states in the random walk.
1065 %        \item \textbf{Random Excursions Test}. Determine if the number of visits to a particular state within a cycle deviates from what one would expect for a random sequence.
1066 %    \end{itemize}
1067
1068 %\item \textbf{Chaos according to Li and Yorke}. Two points of the phase space $(x,y)$ define a couple of Li-Yorke when $\limsup_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))>0$ et $\liminf_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))=0$, meaning that their orbits always oscillate as the iterations pass. When a system is compact and contains an uncountable set of such points, it is claimed as chaotic according
1069 %to Li-Yorke~\cite{Li75,Ruette2001}. A similar property is regarded in the following NIST test~\cite{Nist10}.
1070 %    \begin{itemize}
1071 %        \item \textbf{Runs Test}. To determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines whether the oscillation between such zeros and ones is too fast or too slow.
1072 %    \end{itemize}
1073 %    \item \textbf{Topological entropy}. The desire to formulate an equivalency of the thermodynamics entropy
1074 %has emerged both in the topological and statistical fields. Once again, a similar objective has led to two different
1075 %rewritting of an entropy based disorder: the famous Shannon definition of entropy is approximated in the statistical approach, 
1076 %whereas topological entropy is defined as follows:
1077 %$x,y \in \mathcal{X}$ are $\varepsilon-$\emph{separated in time $n$} if there exists $k \leqslant n$ such that $d\left(f^{(k)}(x),f^{(k)}(y)\right)>\varepsilon$. Then $(n,\varepsilon)-$separated sets are sets of points that are all $\varepsilon-$separated in time $n$, which
1078 %leads to the definition of $s_n(\varepsilon,Y)$, being the maximal cardinality of all $(n,\varepsilon)-$separated sets. Using these notations, 
1079 %the topological entropy is defined as follows: $$h_{top}(\mathcal{X},f)  = \displaystyle{\lim_{\varepsilon \rightarrow 0} \Big[ \limsup_{n \rightarrow +\infty} \dfrac{1}{n} \log s_n(\varepsilon,\mathcal{X})\Big]}.$$
1080 %This value measures the average exponential growth of the number of distinguishable orbit segments. 
1081 %In this sense, it measures the complexity of the topological dynamical system, whereas 
1082 %the Shannon approach comes to mind when defining the following test~\cite{Nist10}:
1083 %    \begin{itemize}
1084 %\item \textbf{Approximate Entropy Test}. Compare the frequency of the overlapping blocks of two consecutive/adjacent lengths ($m$ and $m+1$) against the expected result for a random sequence.
1085 %    \end{itemize}
1086
1087 %    \item \textbf{Non-linearity, complexity}. Finally, let us remark that non-linearity and complexity are 
1088 %not only sought in general to obtain chaos, but they are also required for randomness, as illustrated by the two tests below~\cite{Nist10}.
1089 %    \begin{itemize}
1090 %\item \textbf{Binary Matrix Rank Test}. Check for linear dependence among fixed length substrings of the original sequence.
1091 %\item \textbf{Linear Complexity Test}. Determine whether or not the sequence is complex enough to be considered random.
1092 %      \end{itemize}
1093 %\end{itemize}
1094
1095
1096 %We have proven in our previous works~\cite{guyeux12:bc} that chaotic iterations satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques} are, among other
1097 %things, strongly transitive, topologically mixing, chaotic as defined by Li and Yorke,
1098 %and that they have a topological entropy and an exponent of Lyapunov both equal to $ln(\mathsf{N})$,
1099 %where $\mathsf{N}$ is the size of the iterated vector.
1100 %These topological properties make that we are ground to believe that a generator based on chaotic
1101 %iterations will probably be able to pass all the existing statistical batteries for pseudorandomness like
1102 %the NIST one. The following subsections, in which we prove that defective generators have their
1103 %statistical properties improved by chaotic iterations, show that such an assumption is true.
1104
1105 %\subsection{Details of some Existing Generators}
1106
1107 %The list of defective PRNGs we will use 
1108 %as inputs for the statistical tests to come is introduced here.
1109
1110 %Firstly, the simple linear congruency generators (LCGs) will be used. 
1111 %They are defined by the following recurrence:
1112 %\begin{equation}
1113 %x^n = (ax^{n-1} + c)~mod~m,
1114 %\label{LCG}
1115 %\end{equation}
1116 %where $a$, $c$, and $x^0$ must be, among other things, non-negative and inferior to 
1117 %$m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer to two (resp. three) 
1118 %combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}.
1119
1120 %Secondly, the multiple recursive generators (MRGs) which will be used,
1121 %are based on a linear recurrence of order 
1122 %$k$, modulo $m$~\cite{LEcuyerS07}:
1123 %\begin{equation}
1124 %x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m .
1125 %\label{MRG}
1126 %\end{equation}
1127 %The combination of two MRGs (referred as 2MRGs) is also used in these experiments.
1128
1129 %Generators based on linear recurrences with carry will be regarded too.
1130 %This family of generators includes the add-with-carry (AWC) generator, based on the recurrence:
1131 %\begin{equation}
1132 %\label{AWC}
1133 %\begin{array}{l}
1134 %x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\
1135 %c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation}
1136 %the SWB generator, having the recurrence:
1137 %\begin{equation}
1138 %\label{SWB}
1139 %\begin{array}{l}
1140 %x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\
1141 %c^n=\left\{
1142 %\begin{array}{l}
1143 %1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\
1144 %0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation}
1145 %and the SWC generator, which is based on the following recurrence:
1146 %\begin{equation}
1147 %\label{SWC}
1148 %\begin{array}{l}
1149 %x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\
1150 %c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation}
1151
1152 %Then the generalized feedback shift register (GFSR) generator has been implemented, that is:
1153 %\begin{equation}
1154 %x^n = x^{n-r} \oplus x^{n-k} .
1155 %\label{GFSR}
1156 %\end{equation}
1157
1158
1159 %Finally, the nonlinear inversive (INV) generator~\cite{LEcuyerS07} has been studied, which is:
1160
1161 %\begin{equation}
1162 %\label{INV}
1163 %\begin{array}{l}
1164 %x^n=\left\{
1165 %\begin{array}{ll}
1166 %(a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\
1167 %a^1 & \text{if}~  z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation}
1168
1169
1170
1171 %\begin{table}
1172 %%\renewcommand{\arraystretch}{1}
1173 %\caption{TestU01 Statistical Test Failures}
1174 %\label{TestU011}
1175 %\centering
1176 %  \begin{tabular}{lccccc}
1177 %    \toprule
1178 %Test name &Tests& Logistic             & XORshift      & ISAAC\\
1179 %Rabbit                                 &       38      &21             &14     &0       \\
1180 %Alphabit                       &       17      &16             &9      &0       \\
1181 %Pseudo DieHARD                         &126    &0              &2      &0      \\
1182 %FIPS\_140\_2                   &16     &0              &0      &0      \\
1183 %SmallCrush                     &15     &4              &5      &0       \\
1184 %Crush                          &144    &95             &57     &0       \\
1185 %Big Crush                      &160    &125            &55     &0       \\ \hline
1186 %Failures               &       &261            &146    &0       \\
1187 %\bottomrule
1188 %  \end{tabular}
1189 %\end{table}
1190
1191
1192
1193 %\begin{table}
1194 %%\renewcommand{\arraystretch}{1}
1195 %\caption{TestU01 Statistical Test Failures for Old CI algorithms ($\mathsf{N}=4$)}
1196 %\label{TestU01 for Old CI}
1197 %\centering
1198 %  \begin{tabular}{lcccc}
1199 %    \toprule
1200 %\multirow{3}*{Test name} & \multicolumn{4}{c}{Old CI}\\
1201 %&Logistic& XORshift& ISAAC&ISAAC  \\ 
1202 %&+& +& + & + \\ 
1203 %&Logistic& XORshift& XORshift&ISAAC  \\ \cmidrule(r){2-5}
1204 %Rabbit                                         &7      &2      &0      &0       \\
1205 %Alphabit                               & 3     &0      &0      &0       \\
1206 %DieHARD                        &0      &0      &0      &0      \\
1207 %FIPS\_140\_2                   &0      &0      &0      &0      \\
1208 %SmallCrush                             &2      &0      &0      &0       \\
1209 %Crush                                  &47     &4      &0      &0       \\
1210 %Big Crush                              &79     &3      &0      &0       \\ \hline
1211 %Failures                               &138    &9      &0      &0       \\
1212 %\bottomrule
1213 %  \end{tabular}
1214 %\end{table}
1215
1216
1217
1218
1219
1220 %\subsection{Statistical tests}
1221 %\label{Security analysis}
1222
1223 %Three batteries of tests are reputed and regularly used
1224 %to evaluate the statistical properties of newly designed pseudorandom
1225 %number generators. These batteries are named DieHard~\cite{Marsaglia1996},
1226 %the NIST suite~\cite{ANDREW2008}, and the most stringent one called
1227 %TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries.
1228
1229
1230
1231 %\label{Results and discussion}
1232 %\begin{table*}
1233 %%\renewcommand{\arraystretch}{1}
1234 %\caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
1235 %\label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
1236 %\centering
1237 %  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|}
1238 %    \hline\hline
1239 %Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1240 %\backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB  & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline
1241 %NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15}   & 14/15 & 14/15  & 14/15 & 14/15& 14/15& 14/15 \\ \hline
1242 %DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline
1243 %\end{tabular}
1244 %\end{table*}
1245
1246 %Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the 
1247 %results on the two first batteries recalled above, indicating that all the PRNGs presented
1248 %in the previous section
1249 %cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot 
1250 %fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic
1251 %iterations can solve this issue.
1252 %%More precisely, to
1253 %%illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}:
1254 %%\begin{enumerate}
1255 %%  \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category.
1256 %%  \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process.
1257 %%  \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$
1258 %%\begin{equation}
1259 %%\begin{array}{l}
1260 %%\left\{
1261 %%\begin{array}{l}
1262 %%x_i^{n-1}~~~~~\text{if}~S^n\neq i \\
1263 %%\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array}
1264 %%\end{equation}
1265 %%$m$ is called the \emph{functional power}.
1266 %%\end{enumerate}
1267 %%
1268 %The obtained results are reproduced in Table
1269 %\ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}.
1270 %The scores written in boldface indicate that all the tests have been passed successfully, whereas an 
1271 %asterisk ``*'' means that the considered passing rate has been improved.
1272 %The improvements are obvious for both the ``Old CI'' and the ``New CI'' generators.
1273 %Concerning the ``Xor CI PRNG'', the score is less spectacular. Because of a large speed improvement, the statistics
1274 % are not as good as for the two other versions of these CIPRNGs.
1275 %However 8 tests have been improved (with no deflation for the other results).
1276
1277
1278 %\begin{table*}
1279 %%\renewcommand{\arraystretch}{1.3}
1280 %\caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
1281 %\label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
1282 %\centering
1283 %  \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|}
1284 %    \hline
1285 %Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
1286 %\backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG  & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline
1287 %Old CIPRNG\\ \hline \hline
1288 %NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}   & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1289 %DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} *  & \textbf{18/18} *  & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline
1290 %New CIPRNG\\ \hline \hline
1291 %NIST & \textbf{15/15} *  & \textbf{15/15} * & \textbf{15/15}   & \textbf{15/15}  & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
1292 %DieHARD & \textbf{18/18} *  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline
1293 %Xor CIPRNG\\ \hline\hline
1294 %NIST & 14/15*& \textbf{15/15} *   & \textbf{15/15}   & \textbf{15/15}   & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15}  \\ \hline
1295 %DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18}  & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline
1296 %\end{tabular}
1297 %\end{table*}
1298
1299
1300 %We have then investigated in~\cite{bfg12a:ip} if it were possible to improve
1301 %the statistical behavior of the Xor CI version by combining more than one 
1302 %$\oplus$ operation. Results are summarized in Table~\ref{threshold}, illustrating
1303 %the progressive increasing effects of chaotic iterations, when giving time to chaos to get settled in.
1304 %Thus rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained 
1305 %using chaotic iterations on defective generators.
1306
1307 %\begin{table*}
1308 %%\renewcommand{\arraystretch}{1.3}
1309 %\caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
1310 %\label{threshold}
1311 %\centering
1312 %  \begin{tabular}{|l||c|c|c|c|c|c|c|c|}
1313 %    \hline
1314 %Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3  & MRG2 \\ \hline\hline
1315 %Threshold  value $m$& 19 & 7  & 2& 1 & 11& 9& 3& 4\\ \hline\hline
1316 %\end{tabular}
1317 %\end{table*}
1318
1319 %Finally, the TestU01 battery has been launched on three well-known generators 
1320 %(a logistic map, a simple XORshift, and the cryptographically secure ISAAC, 
1321 %see Table~\ref{TestU011}). These results can be compared with 
1322 %Table~\ref{TestU01 for Old CI}, which gives the scores obtained by the
1323 %Old CI PRNG that has received these generators.
1324 %The obvious improvement speaks for itself, and together with the other
1325 %results recalled in this section, it reinforces the opinion that a strong
1326 %correlation between topological properties and statistical behavior exists.
1327
1328
1329 %The next subsection will now give a concrete original implementation of the Xor CI PRNG, the
1330 %fastest generator in the chaotic iteration based family. In the remainder,
1331 %this generator will be simply referred to as CIPRNG, or ``the proposed PRNG'', if this statement does not
1332 %raise ambiguity.
1333
1334
1335 \section{Toward Efficiency and Improvement for CI PRNG}
1336 \label{sec:efficient PRNG}
1337
1338 \subsection{First Efficient Implementation of a PRNG based on Chaotic Iterations}
1339 %
1340 %Based on the proof presented in the previous section, it is now possible to 
1341 %improve the speed of the generator formerly presented in~\cite{bgw09:ip,guyeux10}. 
1342 %The first idea is to consider
1343 %that the provided strategy is a pseudorandom Boolean vector obtained by a
1344 %given PRNG.
1345 %An iteration of the system is simply the bitwise exclusive or between
1346 %the last computed state and the current strategy.
1347 %Topological properties of disorder exhibited by chaotic 
1348 %iterations can be inherited by the inputted generator, we hope by doing so to 
1349 %obtain some statistical improvements while preserving speed.
1350 %
1351 %%RAPH : j'ai viré tout ca
1352 %% Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
1353 %% are
1354 %% done.  
1355 %% Suppose  that $x$ and the  strategy $S^i$ are given as
1356 %% binary vectors.
1357 %% Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
1358
1359 %% \begin{table}
1360 %% \begin{scriptsize}
1361 %% $$
1362 %% \begin{array}{|cc|cccccccccccccccc|}
1363 %% \hline
1364 %% x      &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
1365 %% \hline
1366 %% S^i      &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
1367 %% \hline
1368 %% x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
1369 %% \hline
1370
1371 %% \hline
1372 %%  \end{array}
1373 %% $$
1374 %% \end{scriptsize}
1375 %% \caption{Example of an arbitrary round of the proposed generator}
1376 %% \label{TableExemple}
1377 %% \end{table}
1378
1379
1380
1381
1382 \lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label={algo:seqCIPRNG}}
1383 \begin{small}
1384 \begin{lstlisting}
1385
1386 unsigned int CIPRNG() {
1387   static unsigned int x = 123123123;
1388   unsigned long t1 = xorshift();
1389   unsigned long t2 = xor128();
1390   unsigned long t3 = xorwow();
1391   x = x^(unsigned int)t1;
1392   x = x^(unsigned int)(t2>>32);
1393   x = x^(unsigned int)(t3>>32);
1394   x = x^(unsigned int)t2;
1395   x = x^(unsigned int)(t1>>32);
1396   x = x^(unsigned int)t3;
1397   return x;
1398 }
1399 \end{lstlisting}
1400 \end{small}
1401
1402
1403
1404 In Listing~\ref{algo:seqCIPRNG} a sequential  version of the proposed PRNG based
1405 on  chaotic  iterations  is  presented.   The xor  operator  is  represented  by
1406 \textasciicircum.  This function uses  three classical 64-bits PRNGs, namely the
1407 \texttt{xorshift},         the          \texttt{xor128},         and         the
1408 \texttt{xorwow}~\cite{Marsaglia2003}.  In the following, we call them ``xor-like
1409 PRNGs''.   As each  xor-like PRNG  uses 64-bits  whereas our  proposed generator
1410 works with 32-bits, we use the command \texttt{(unsigned int)}, that selects the
1411 32 least  significant bits  of a given  integer, and the  code \texttt{(unsigned
1412   int)(t$>>$32)} in order to obtain the 32 most significant bits of \texttt{t}.
1413
1414 Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
1415 that  are provided by  3 64-bits  PRNGs.  This  version successfully  passes the
1416 stringent BigCrush battery of tests~\cite{LEcuyerS07}. 
1417 At this point, we thus
1418 have defined an efficient and statistically unbiased generator. Its speed is
1419 directly related to the use of linear operations, but for the same reason,
1420 this fast generator cannot be proven as secure.
1421
1422
1423
1424 \subsection{Efficient PRNGs based on Chaotic Iterations on GPU}
1425 \label{sec:efficient PRNG gpu}
1426
1427 In order to  take benefits from the computing power  of GPU, a program
1428 needs  to have  independent blocks  of  threads that  can be  computed
1429 simultaneously. In general,  the larger the number of  threads is, the
1430 more local  memory is  used, and the  less branching  instructions are
1431 used  (if,  while,  ...),  the  better the  performances  on  GPU  are.
1432 Obviously, having these requirements in  mind, it is possible to build
1433 a   program    similar   to    the   one   presented    in  Listing 
1434 \ref{algo:seqCIPRNG}, which computes  pseudorandom numbers on GPU.  To
1435 do  so,  we  must   firstly  recall  that  in  the  CUDA~\cite{Nvid10}
1436 environment,    threads    have     a    local    identifier    called
1437 \texttt{ThreadIdx},  which   is  relative  to   the  block  containing
1438 them. Furthermore, in  CUDA, parts of  the code that are executed by the  GPU, are
1439 called {\it kernels}.
1440
1441
1442 \subsection{Naive Version for GPU}
1443
1444  
1445 It is possible to deduce from the CPU version a fairly similar version adapted to GPU.
1446 The simple principle consists in making each thread of the GPU computing the CPU version of our PRNG.  
1447 Of course,  the  three xor-like
1448 PRNGs  used in these computations must have different  parameters. 
1449 In a given thread, these parameters are
1450 randomly picked from another PRNGs. 
1451 The  initialization stage is performed by  the CPU.
1452 To do so, the  ISAAC  PRNG~\cite{Jenkins96} is used to  set  all  the
1453 parameters embedded into each thread.   
1454
1455 The implementation of  the three
1456 xor-like  PRNGs  is  straightforward  when  their  parameters  have  been
1457 allocated in  the GPU memory.  Each xor-like  works with  an internal
1458 number  $x$  that saves  the  last  generated  pseudorandom number. Additionally,  the
1459 implementation of the  xor128, the xorshift, and the  xorwow respectively require
1460 4, 5, and 6 unsigned long as internal variables.
1461
1462
1463 \begin{algorithm}
1464 \begin{small}
1465 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
1466 PRNGs in global memory\;
1467 NumThreads: number of threads\;}
1468 \KwOut{NewNb: array containing random numbers in global memory}
1469 \If{threadIdx is concerned by the computation} {
1470   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
1471   \For{i=1 to n} {
1472     compute a new PRNG as in Listing\ref{algo:seqCIPRNG}\;
1473     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1474   }
1475   store internal variables in InternalVarXorLikeArray[threadIdx]\;
1476 }
1477 \end{small}
1478 \caption{Main kernel of the GPU ``naive'' version of the PRNG based on chaotic iterations}
1479 \label{algo:gpu_kernel}
1480 \end{algorithm}
1481
1482
1483
1484 Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of the proposed  PRNG on
1485 GPU.  Due to the available  memory in the  GPU and the number  of threads
1486 used simultaneously,  the number  of random numbers  that a thread  can generate
1487 inside   a    kernel   is   limited  (\emph{i.e.},    the    variable   \texttt{n}   in
1488 algorithm~\ref{algo:gpu_kernel}). For instance, if  $100,000$ threads are used and
1489 if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)},
1490 then   the  memory   required   to  store all of the  internals   variables  of both the  xor-like
1491 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
1492 and  the pseudorandom  numbers generated by  our  PRNG,  is  equal to  $100,000\times  ((4+5+6)\times
1493 2+(1+100))=1,310,000$ 32-bits numbers, that is, approximately $52$Mb.
1494 Remark that the only requirement regarding the seed regarding the security of our PRNG is
1495 that it must be randomly picked. Indeed, the asymptotic security of BBS guarantees
1496 that, as the seed length increases, no polynomial time statistical test can 
1497 distinguish the pseudorandom sequences from truly random sequences with non-negligible probability,
1498 see, \emph{e.g.},~\cite{Sidorenko:2005:CSB:2179218.2179250}.
1499
1500
1501 This generator is able to pass the whole BigCrush battery of tests, for all
1502 the versions that have been tested depending on their number of threads 
1503 (called \texttt{NumThreads} in our algorithm, tested up to $5$ million).
1504
1505 \begin{remark}
1506 The proposed algorithm has  the  advantage of  manipulating  independent
1507 PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing
1508 to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in
1509 using a master node for the initialization. This master node computes the initial parameters
1510 for all the different nodes involved in the computation.
1511 \end{remark}
1512
1513 \subsection{Improved Version for GPU}
1514
1515 As GPU cards using CUDA have a shared memory between threads of the same block, it
1516 is possible  to use this  feature in order  to simplify the  previous algorithm,
1517 i.e., to use less  than 3 xor-like PRNGs. The solution  consists in computing only
1518 one xor-like PRNG by thread, saving  it into the shared memory, and then to use the results
1519 of some  other threads in the  same block of  threads. In order to  define which
1520 thread uses the result of which other  one, we can use a combination array that
1521 contains  the indexes  of  all threads  and  for which  a combination has  been
1522 performed. 
1523
1524 In  Algorithm~\ref{algo:gpu_kernel2},  two  combination  arrays are  used.   The
1525 variable     \texttt{offset}    is     computed    using     the     value    of
1526 \texttt{combination\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
1527 representing the  indexes of  the other  threads whose results  are used  by the
1528 current one.   In this algorithm, we  consider that a 32-bits  xor-like PRNG has
1529 been chosen. In practice, we  use the xor128 proposed in~\cite{Marsaglia2003} in
1530 which  unsigned longs  (64 bits)  have been  replaced by  unsigned  integers (32
1531 bits).
1532
1533 This version  can also pass the whole {\it BigCrush} battery of tests.
1534
1535 \begin{algorithm}
1536 \begin{small}
1537 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
1538 in global memory\;
1539 NumThreads: Number of threads\;
1540 array\_comb1, array\_comb2: Arrays containing combinations of size combination\_size\;}
1541
1542 \KwOut{NewNb: array containing random numbers in global memory}
1543 \If{threadIdx is concerned} {
1544   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables including shared memory and x\;
1545   offset = threadIdx\%combination\_size\;
1546   o1 = threadIdx-offset+array\_comb1[offset]\;
1547   o2 = threadIdx-offset+array\_comb2[offset]\;
1548   \For{i=1 to n} {
1549     t=xor-like()\;
1550     t=t\textasciicircum shmem[o1]\textasciicircum shmem[o2]\;
1551     shared\_mem[threadIdx]=t\;
1552     x = x\textasciicircum t\;
1553
1554     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1555   }
1556   store internal variables in InternalVarXorLikeArray[threadIdx]\;
1557 }
1558 \end{small}
1559 \caption{Main kernel for the chaotic iterations based PRNG GPU efficient
1560 version\label{IR}}
1561 \label{algo:gpu_kernel2} 
1562 \end{algorithm}
1563
1564 \subsection{Chaos Evaluation of the Improved Version}
1565
1566 A run of Algorithm~\ref{algo:gpu_kernel2} consists in an operation ($x=x\oplus t$) having 
1567 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
1568 system of Eq.~\ref{eq:generalIC}. That is, an iteration of the general chaotic
1569 iterations is realized between the last stored value $x$ of the thread and a strategy $t$
1570 (obtained by a bitwise exclusive or between a value provided by a xor-like() call
1571 and two values previously obtained by two other threads).
1572 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
1573 we must guarantee that this dynamical system iterates on the space 
1574 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
1575 The left term $x$ obviously belongs to $\mathds{B}^ \mathsf{N}$.
1576 To prevent  any flaws of chaotic properties, we must check that the right 
1577 term (the last $t$), corresponding to the strategies,  can possibly be equal to any
1578 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
1579
1580 Such a result is obvious, as for the xor-like(), all the
1581 integers belonging into its interval of definition can occur at each iteration, and thus the 
1582 last $t$ respects the requirement. Furthermore, it is possible to
1583 prove by an immediate mathematical induction that, as the initial $x$
1584 is uniformly distributed (it is provided by a cryptographically secure PRNG),
1585 the two other stored values shmem[o1] and shmem[o2] are uniformly distributed too,
1586 (this is the induction hypothesis), and thus the next $x$ is finally uniformly distributed.
1587
1588 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
1589 chaotic iterations presented previously, and for this reason, it satisfies the 
1590 Devaney's formulation of a chaotic behavior.
1591
1592 \section{Experiments}
1593 \label{sec:experiments}
1594
1595 Different experiments  have been  performed in order  to measure  the generation
1596 speed. We have used a first computer equipped with a Tesla C1060 NVidia  GPU card
1597 and an
1598 Intel  Xeon E5530 cadenced  at 2.40  GHz,  and 
1599 a second computer  equipped with a smaller  CPU and  a GeForce GTX  280. 
1600 All the
1601 cards have 240 cores.
1602
1603 In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  quantity of  pseudorandom numbers
1604 generated per second with various xor-like based PRNGs. In this figure, the optimized
1605 versions use the {\it xor64} described in~\cite{Marsaglia2003}, whereas the naive versions
1606 embed  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIPRNG}.   In
1607 order to obtain the optimal performances, the storage of pseudorandom numbers
1608 into the GPU memory has been removed. This step is time consuming and slows down the numbers
1609 generation.  Moreover this   storage  is  completely
1610 useless, in case of applications that consume the pseudorandom
1611 numbers  directly   after generation. We can see  that when the number of  threads is greater
1612 than approximately 30,000 and lower than 5 million, the number of pseudorandom numbers generated
1613 per second  is almost constant.  With the  naive version, this value ranges from 2.5 to
1614 3GSamples/s.   With  the  optimized   version,  it  is  approximately  equal to
1615 20GSamples/s. Finally  we can remark  that both GPU  cards are quite  similar, but in
1616 practice,  the Tesla C1060  has more  memory than  the GTX  280, and  this memory
1617 is of better quality.
1618 As a  comparison,   Listing~\ref{algo:seqCIPRNG}  leads   to the  generation of  about
1619 138MSample/s when using one core of the Xeon E5530.
1620
1621 \begin{figure}[htbp]
1622 \begin{center}
1623   \includegraphics[scale=0.7]{curve_time_xorlike_gpu.pdf}
1624 \end{center}
1625 \caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
1626 \label{fig:time_xorlike_gpu}
1627 \end{figure}
1628
1629
1630
1631
1632
1633 In Figure~\ref{fig:time_bbs_gpu} we highlight  the performances of the optimized
1634 BBS-based PRNG on GPU.  On  the Tesla C1060 we obtain approximately 700MSample/s
1635 and  on the  GTX 280  about  670MSample/s, which  is obviously  slower than  the
1636 xorlike-based PRNG on GPU. However, we  will show in the next sections that this
1637 new PRNG  has a strong  level of  security, which is  necessarily paid by  a speed
1638 reduction.
1639
1640 \begin{figure}[htbp]
1641 \begin{center}
1642   \includegraphics[scale=0.7]{curve_time_bbs_gpu.pdf}
1643 \end{center}
1644 \caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
1645 \label{fig:time_bbs_gpu}
1646 \end{figure}
1647
1648 All  these  experiments allow  us  to conclude  that  it  is possible  to
1649 generate a very large quantity of pseudorandom  numbers statistically perfect with the  xor-like version.
1650 To a certain extend, it is also the case with the secure BBS-based version, the speed deflation being
1651 explained by the fact that the former  version has ``only''
1652 chaotic properties and statistical perfection, whereas the latter is also cryptographically secure,
1653 as  shown in the next sections.
1654
1655
1656
1657
1658
1659
1660
1661 \section{Security Analysis}
1662
1663
1664 This section is dedicated to the security analysis of the
1665   proposed PRNGs, both from a theoretical and from a practical point of view.
1666
1667 \subsection{Theoretical Proof of Security}
1668 \label{sec:security analysis}
1669
1670 The standard definition
1671   of {\it indistinguishability} used is the classical one as defined for
1672   instance in~\cite[chapter~3]{Goldreich}. 
1673   This property shows that predicting the future results of the PRNG
1674   cannot be done in a reasonable time compared to the generation time. It is important to emphasize that this
1675   is a relative notion between breaking time and the sizes of the
1676   keys/seeds. Of course, if small keys or seeds are chosen, the system can
1677   be broken in practice. But it also means that if the keys/seeds are large
1678   enough, the system is secured.
1679 As a complement, an example of a concrete practical evaluation of security
1680 is outlined in the next subsection.
1681
1682 In this section the concatenation of two strings $u$ and $v$ is classically
1683 denoted by $uv$.
1684 In a cryptographic context, a pseudorandom generator is a deterministic
1685 algorithm $G$ transforming strings  into strings and such that, for any
1686 seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size
1687 $\ell_G(m)$ with $\ell_G(m)>m$.
1688 The notion of {\it secure} PRNGs can now be defined as follows. 
1689
1690 \begin{definition}
1691 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
1692 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
1693 large $m$'s,
1694 $$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$
1695 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
1696 probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the
1697 internal coin tosses of $D$. 
1698 \end{definition}
1699
1700 Intuitively,  it means  that  there is  no  polynomial time  algorithm that  can
1701 distinguish a  perfect uniform random generator  from $G$ with  a non negligible
1702 probability.   An equivalent  formulation of  this well-known  security property
1703 means that  it is  possible \emph{in practice}  to predict  the next bit  of the
1704 generator, knowing all  the previously produced ones.  The  interested reader is
1705 referred to~\cite[chapter~3]{Goldreich}  for more  information. Note that  it is
1706 quite easily possible to change the function $\ell$ into any polynomial function
1707 $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
1708
1709 The generation schema developed in (\ref{equation Oplus}) is based on a
1710 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
1711 without loss of generality, that for any string $S_0$ of size $N$, the size
1712 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
1713 Let $S_1,\ldots,S_k$ be the 
1714 strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
1715 the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
1716 is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
1717 $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
1718 (x_o\bigoplus_{i=0}^{i=k}S_i)$. One in particular has $\ell_{X}(2N)=kN=\ell_H(N)$. 
1719 We claim now that if this PRNG is secure,
1720 then the new one is secure too.
1721
1722 \begin{proposition}
1723 \label{cryptopreuve}
1724 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
1725 PRNG too.
1726 \end{proposition}
1727
1728 \begin{proof}
1729 The proposition is proven by contraposition. Assume that $X$ is not
1730 secure. By Definition, there exists a polynomial time probabilistic
1731 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
1732 $N\geq \frac{k_0}{2}$ satisfying 
1733 $$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
1734 We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
1735 $kN$:
1736 \begin{enumerate}
1737 \item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
1738 \item Pick a string $y$ of size $N$ uniformly at random.
1739 \item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1740   \bigoplus_{i=1}^{i=k} w_i).$
1741 \item Return $D(z)$.
1742 \end{enumerate}
1743
1744
1745 Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
1746 from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
1747 (each $w_i$ has length $N$) to 
1748 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
1749   \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
1750 \begin{equation}\label{PCH-1}
1751 D^\prime(w)=D(\varphi_y(w)),
1752 \end{equation}
1753 where $y$ is randomly generated. 
1754 Moreover, for each $y$, $\varphi_{y}$ is injective: if 
1755 $(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
1756 w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
1757 (y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
1758 $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
1759 by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
1760 is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
1761 one has
1762 $\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and,
1763 therefore, 
1764 \begin{equation}\label{PCH-2}
1765 \mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1].
1766 \end{equation}
1767
1768 Now, using (\ref{PCH-1}) again, one has  for every $x$,
1769 \begin{equation}\label{PCH-3}
1770 D^\prime(H(x))=D(\varphi_y(H(x))),
1771 \end{equation}
1772 where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
1773 thus
1774 \begin{equation}%\label{PCH-3}      %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant
1775 D^\prime(H(x))=D(yx),
1776 \end{equation}
1777 where $y$ is randomly generated. 
1778 It follows that 
1779
1780 \begin{equation}\label{PCH-4}
1781 \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
1782 \end{equation}
1783  From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
1784 there exists a polynomial time probabilistic
1785 algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
1786 $N\geq \frac{k_0}{2}$ satisfying 
1787 $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
1788 proving that $H$ is not secure, which is a contradiction. 
1789 \end{proof}
1790
1791
1792
1793 \subsection{Practical Security Evaluation}
1794 \label{sec:Practicak evaluation}
1795
1796 Pseudorandom generators based on Eq.~\eqref{equation Oplus} are thus cryptographically secure when
1797 they are XORed with an already cryptographically
1798 secure PRNG. But, as stated previously,
1799 such a property does not mean that, whatever the
1800 key size, no attacker can predict the next bit
1801 knowing all the previously released ones.
1802 However, given a key size, it is possible to 
1803 measure in practice the minimum duration needed
1804 for an attacker to break a cryptographically
1805 secure PRNG, if we know the power of his/her
1806 machines. Such a concrete security evaluation 
1807 is related to the $(T,\varepsilon)-$security
1808 notion, which is recalled and evaluated in what 
1809 follows, for the sake of completeness.
1810
1811 Let us firstly recall that,
1812 \begin{definition}
1813 Let $\mathcal{D} : \mathds{B}^M \longrightarrow \mathds{B}$ be a probabilistic algorithm that runs
1814 in time $T$. 
1815 Let $\varepsilon > 0$. 
1816 $\mathcal{D}$ is called a $(T,\varepsilon)-$distinguishing attack on pseudorandom
1817 generator $G$ if
1818
1819 $$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right. - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$$
1820 \noindent where the probability is taken over the internal coin flips of $\mathcal{D}$, and the notation
1821 ``$\in_R$'' indicates the process of selecting an element at random and uniformly over the
1822 corresponding set.
1823 \end{definition}
1824
1825 Let us recall that the running time of a probabilistic algorithm is defined to be the
1826 maximum of the expected number of steps needed to produce an output, maximized
1827 over all inputs; the expected number is averaged over all coin flips made by the algorithm~\cite{Knuth97}.
1828 We are now able to define the notion of cryptographically secure PRNGs:
1829
1830 \begin{definition}
1831 A pseudorandom generator is $(T,\varepsilon)-$secure if there exists no $(T,\varepsilon)-$distinguishing attack on this pseudorandom generator.
1832 \end{definition}
1833
1834
1835
1836
1837
1838
1839
1840 Suppose now that the PRNG of Eq.~\eqref{equation Oplus} will work during 
1841 $M=100$ time units, and that during this period,
1842 an attacker can realize $10^{12}$ clock cycles.
1843 We thus wonder whether, during the PRNG's 
1844 lifetime, the attacker can distinguish this 
1845 sequence from a truly random one, with a probability
1846 greater than $\varepsilon = 0.2$.
1847 We consider that $N$ has 900 bits.
1848
1849 Predicting the next generated bit knowing all the
1850 previously released ones by Eq.~\eqref{equation Oplus} is obviously equivalent to predicting the
1851 next bit in the BBS generator, which
1852 is cryptographically secure. More precisely, it
1853 is $(T,\varepsilon)-$secure: no 
1854 $(T,\varepsilon)-$distinguishing attack can be
1855 successfully realized on this PRNG, if~\cite{Fischlin}
1856 \begin{equation}
1857 T \leqslant \dfrac{L(N)}{6 N (log_2(N))\varepsilon^{-2}M^2}-2^7 N \varepsilon^{-2} M^2 log_2 (8 N \varepsilon^{-1}M)
1858 \label{mesureConcrete}
1859 \end{equation}
1860 where $M$ is the length of the output ($M=100$ in
1861 our example), and $L(N)$ is equal to
1862 $$
1863 2.8\times 10^{-3} exp \left(1.9229 \times (N ~ln~ 2)^\frac{1}{3} \times (ln(N~ln~  2))^\frac{2}{3}\right)
1864 $$
1865 is the number of clock cycles to factor a $N-$bit
1866 integer.
1867
1868
1869
1870
1871 A direct numerical application shows that this attacker 
1872 cannot achieve his/her $(10^{12},0.2)$ distinguishing
1873 attack in that context.
1874
1875
1876
1877 \section{Cryptographical Applications}
1878
1879 \subsection{A Cryptographically Secure PRNG for GPU}
1880 \label{sec:CSGPU}
1881
1882 It is  possible to build a  cryptographically secure PRNG based  on the previous
1883 algorithm (Algorithm~\ref{algo:gpu_kernel2}).   Due to Proposition~\ref{cryptopreuve},
1884 it simply consists  in replacing
1885 the  {\it  xor-like} PRNG  by  a  cryptographically  secure one.  
1886 We have chosen the Blum Blum Shub generator~\cite{BBS} (usually denoted by BBS) having the form:
1887 $$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers (these
1888 prime numbers  need to be congruent  to 3 modulus  4). BBS is known to be
1889 very slow and only usable for cryptographic applications. 
1890
1891   
1892 The modulus operation is the most time consuming operation for current
1893 GPU cards.  So in order to obtain quite reasonable performances, it is
1894 required to use only modulus  on 32-bits integer numbers. Consequently
1895 $x_n^2$ need  to be inferior than $2^{32}$,  and thus the number $M$ must be
1896 inferior than $2^{16}$.  So in practice we can choose prime numbers around
1897 256 that are congruent to 3 modulus 4.  With 32-bits numbers, only the
1898 4 least significant bits of $x_n$ can be chosen (the maximum number of
1899 indistinguishable    bits    is    lesser    than   or    equals    to
1900 $log_2(log_2(M))$). In other words, to generate a  32-bits number, we need to use
1901 8 times  the BBS  algorithm with possibly different  combinations of  $M$. This
1902 approach is  not sufficient to be able to pass  all the tests of TestU01,
1903 as small values of  $M$ for the BBS  lead to
1904   small periods. So, in  order to add randomness  we have proceeded with
1905 the followings  modifications. 
1906 \begin{itemize}
1907 \item
1908 Firstly, we  define 16 arrangement arrays  instead of 2  (as described in
1909 Algorithm \ref{algo:gpu_kernel2}), but only 2 of them are used at each call of
1910 the  PRNG kernels. In  practice, the  selection of   combination
1911 arrays to be used is different for all the threads. It is determined
1912 by using  the three last bits  of two internal variables  used by BBS.
1913 %This approach  adds more randomness.   
1914 In Algorithm~\ref{algo:bbs_gpu},
1915 character  \& is for the  bitwise AND. Thus using  \&7 with  a number
1916 gives the last 3 bits, thus providing a number between 0 and 7.
1917 \item
1918 Secondly, after the  generation of the 8 BBS numbers  for each thread, we
1919 have a 32-bits number whose period is possibly quite small. So
1920 to add randomness,  we generate 4 more BBS numbers   to
1921 shift  the 32-bits  numbers, and  add up to  6 new  bits.  This  improvement is
1922 described  in Algorithm~\ref{algo:bbs_gpu}.  In  practice, the last 2 bits
1923 of the first new BBS number are  used to make a left shift of at most
1924 3 bits. The  last 3 bits of the  second new BBS number are  added to the
1925 strategy whatever the value of the first left shift. The third and the
1926 fourth new BBS  numbers are used similarly to apply  a new left shift
1927 and add 3 new bits.
1928 \item
1929 Finally, as  we use 8 BBS numbers  for each thread, the  storage of these
1930 numbers at the end of the  kernel is performed using a rotation. So,
1931 internal  variable for  BBS number  1 is  stored in  place  2, internal
1932 variable  for BBS  number 2  is  stored in  place 3,  ..., and finally, internal
1933 variable for BBS number 8 is stored in place 1.
1934 \end{itemize}
1935
1936 \begin{algorithm}
1937 \begin{small}
1938 \KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS
1939 in global memory\;
1940 NumThreads: Number of threads\;
1941 array\_comb: 2D Arrays containing 16 combinations (in first dimension)  of size combination\_size (in second dimension)\;
1942 array\_shift[4]=\{0,1,3,7\}\;
1943 }
1944
1945 \KwOut{NewNb: array containing random numbers in global memory}
1946 \If{threadIdx is concerned} {
1947   retrieve data from InternalVarBBSArray[threadIdx] in local variables including shared memory and x\;
1948   we consider that bbs1 ... bbs8 represent the internal states of the 8 BBS numbers\;
1949   offset = threadIdx\%combination\_size\;
1950   o1 = threadIdx-offset+array\_comb[bbs1\&7][offset]\;
1951   o2 = threadIdx-offset+array\_comb[8+bbs2\&7][offset]\;
1952   \For{i=1 to n} {
1953     t$<<$=4\;
1954     t|=BBS1(bbs1)\&15\;
1955     ...\;
1956     t$<<$=4\;
1957     t|=BBS8(bbs8)\&15\;
1958     \tcp{two new shifts}
1959     shift=BBS3(bbs3)\&3\;
1960     t$<<$=shift\;
1961     t|=BBS1(bbs1)\&array\_shift[shift]\;
1962     shift=BBS7(bbs7)\&3\;
1963     t$<<$=shift\;
1964     t|=BBS2(bbs2)\&array\_shift[shift]\;
1965     t=t\textasciicircum  shmem[o1]\textasciicircum     shmem[o2]\;
1966     shared\_mem[threadIdx]=t\;
1967     x = x\textasciicircum   t\;
1968
1969     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
1970   }
1971   store internal variables in InternalVarXorLikeArray[threadIdx] using a rotation\;
1972 }
1973 \end{small}
1974 \caption{main kernel for the BBS based PRNG GPU}
1975 \label{algo:bbs_gpu}
1976 \end{algorithm}
1977
1978 In Algorithm~\ref{algo:bbs_gpu}, $n$ is for  the quantity of random numbers that
1979 a thread has to  generate.  The operation t<<=4 performs a left  shift of 4 bits
1980 on the variable  $t$ and stores the result in  $t$, and $BBS1(bbs1)\&15$ selects
1981 the last  four bits  of the  result of $BBS1$.   Thus an  operation of  the form
1982 $t<<=4; t|=BBS1(bbs1)\&15\;$  realizes in $t$ a  left shift of 4  bits, and then
1983 puts the 4 last bits of $BBS1(bbs1)$  in the four last positions of $t$.  Let us
1984 remark that the initialization $t$ is not a  necessity as we fill it 4 bits by 4
1985 bits, until  having obtained 32-bits.  The  two last new shifts  are realized in
1986 order to enlarge the small periods of  the BBS used here, to introduce a kind of
1987 variability.  In these operations, we make twice a left shift of $t$ of \emph{at
1988   most}  3 bits,  represented by  \texttt{shift} in  the algorithm,  and  we put
1989 \emph{exactly} the \texttt{shift}  last bits from a BBS  into the \texttt{shift}
1990 last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
1991 correspondence between the  shift and the number obtained  with \texttt{shift} 1
1992 to make the \texttt{and} operation is used. For example, with a left shift of 0,
1993 we  make an  and operation  with 0,  with  a left  shift of  3, we  make an  and
1994 operation with 7 (represented by 111 in binary mode).
1995
1996 It should  be noticed that this generator has once more the form $x^{n+1} = x^n \oplus S^n$,
1997 where $S^n$ is referred in this algorithm as $t$: each iteration of this
1998 PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
1999 by secure bits produced by the BBS generator, and thus, due to
2000 Proposition~\ref{cryptopreuve}, the resulted PRNG is 
2001 cryptographically secure.
2002
2003 As stated before, even if the proposed PRNG is cryptocaphically
2004 secure, it does not mean that such a generator
2005 can be used as described here when attacks are
2006 awaited. The problem is to determine the minimum 
2007 time required for an attacker, with a given 
2008 computational power, to predict under a probability
2009 lower than 0.5 the $n+1$th bit, knowing the $n$
2010 previous ones. The proposed GPU generator will be
2011 useful in a security context, at least in some 
2012 situations where a secret protected by a pseudorandom
2013 keystream is rapidly obsolete, if this time to 
2014 predict the next bit is large enough when compared
2015 to both the generation and transmission times.
2016 It is true that the prime numbers used in the last
2017 section are very small compared to up-to-date 
2018 security recommendations. However the attacker has not
2019 access to each BBS, but to the output produced 
2020 by Algorithm~\ref{algo:bbs_gpu}, which is far
2021 more complicated than a simple BBS. Indeed, to
2022 determine if this cryptographically secure PRNG
2023 on GPU can be useful in security context with the 
2024 proposed parameters, or if it is only a very fast
2025 and statistically perfect generator on GPU, its
2026 $(T,\varepsilon)-$security must be determined, and
2027 a formulation similar to Eq.\eqref{mesureConcrete}
2028 must be established. The authors
2029 hope to achieve this difficult task in a future
2030 work.
2031
2032
2033 \subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
2034 \label{Blum-Goldwasser}
2035 We finish this research work by giving some thoughts about the use of
2036 the proposed PRNG in an asymmetric cryptosystem.
2037 This first approach will be further investigated in a future work.
2038
2039 \subsubsection{Recalls of the Blum-Goldwasser Probabilistic Cryptosystem}
2040
2041 The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm 
2042 proposed in 1984~\cite{Blum:1985:EPP:19478.19501}.  The encryption algorithm 
2043 implements a XOR-based stream cipher using the BBS PRNG, in order to generate 
2044 the keystream. Decryption is done by obtaining the initial seed thanks to
2045 the final state of the BBS generator and the secret key, thus leading to the
2046  reconstruction of the keystream.
2047
2048 The key generation consists in generating two prime numbers $(p,q)$, 
2049 randomly and independently of each other, that are
2050  congruent to 3 mod 4, and to compute the modulus $N=pq$.
2051 The public key is $N$, whereas the secret key is the factorization $(p,q)$.
2052
2053
2054 Suppose Bob wishes to send a string $m=(m_0, \dots, m_{L-1})$ of $L$ bits to Alice:
2055 \begin{enumerate}
2056 \item Bob picks an integer $r$ randomly in the interval $\llbracket 1,N\rrbracket$ and computes $x_0 = r^2~mod~N$.
2057 \item He uses the BBS to generate the keystream of $L$ pseudorandom bits $(b_0, \dots, b_{L-1})$, as follows. For $i=0$ to $L-1$,
2058 \begin{itemize}
2059 \item $i=0$.
2060 \item While $i \leqslant L-1$:
2061 \begin{itemize}
2062 \item Set $b_i$ equal to the least-significant\footnote{As signaled previously, BBS can securely output up to $\mathsf{N} = \lfloor log(log(N)) \rfloor$ of the least-significant bits of $x_i$ during each round.} bit of $x_i$,
2063 \item $i=i+1$,
2064 \item $x_i = (x_{i-1})^2~mod~N.$
2065 \end{itemize}
2066 \end{itemize}
2067 \item The ciphertext is computed by XORing the plaintext bits $m$ with the keystream: $ c = (c_0, \dots, c_{L-1}) = m \oplus  b$. This ciphertext is $[c, y]$, where $y=x_{0}^{2^{L}}~mod~N.$
2068 \end{enumerate}
2069
2070
2071 When Alice receives $\left[(c_0, \dots, c_{L-1}), y\right]$, she can recover $m$ as follows:
2072 \begin{enumerate}
2073 \item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$.
2074 \item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$.
2075 \item She recomputes the bit-vector $b$ by using BBS and $x_0$.
2076 \item Alice finally computes the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus  b$.
2077 \end{enumerate}
2078
2079
2080 \subsubsection{Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser}
2081
2082 We propose to adapt the Blum-Goldwasser protocol as follows. 
2083 Let $\mathsf{N} = \lfloor log(log(N)) \rfloor$ be the number of bits that can
2084 be obtained securely with the BBS generator using the public key $N$ of Alice.
2085 Alice will pick randomly $S^0$ in $\llbracket 0, 2^{\mathsf{N}-1}\rrbracket$ too, and
2086 her new public key will be $(S^0, N)$.
2087
2088 To encrypt his message, Bob will compute
2089 %%RAPH : ici, j'ai mis un simple $
2090 \begin{equation*}
2091 c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.
2092  \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)
2093 \end{equation*}
2094 instead of $$\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right).$$ 
2095
2096 The same decryption stage as in Blum-Goldwasser leads to the sequence 
2097 $$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right).$$
2098 Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
2099 By doing so, the proposed generator is used in place of BBS, leading to
2100 the inheritance of all the properties presented in this paper.
2101
2102 \section{Conclusion}
2103
2104
2105 In  this  paper, a formerly proposed PRNG based on chaotic iterations
2106 has been generalized to improve its speed. It has been proven to be
2107 chaotic according to Devaney.
2108 Efficient implementations on  GPU using xor-like  PRNGs as input generators
2109 have shown that a very large quantity of pseudorandom numbers can be generated per second (about
2110 20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01,
2111 namely the BigCrush.
2112 Furthermore, we have shown that when the inputted generator is cryptographically
2113 secure, then it is the case too for the PRNG we propose, thus leading to
2114 the possibility of developping fast and secure PRNGs using the GPU architecture.
2115 An improvement of the Blum-Goldwasser cryptosystem, making it 
2116 behave chaotically, has finally been proposed. 
2117
2118 In future  work we plan to extend this research, building a parallel PRNG for  clusters or
2119 grid computing. Topological properties of the various proposed generators will be investigated,
2120 and the use of other categories of PRNGs as input will be studied too. The improvement
2121 of Blum-Goldwasser will be deepened.
2122 Another aspect to consider might be different accelerator-based systems like 
2123 Intel Xeon Phi cards and speed measurements using such cards: as heterogeneity of
2124 supercomputers tends to increase using other accelerators than GPGPUs,
2125 a Xeon Phi solution might be interesting to investigate.
2126  Finally, we
2127 will try to enlarge the quantity of pseudorandom numbers generated per second either
2128 in a simulation context or in a cryptographic one.
2129
2130 \section*{Acknowledgment}
2131 This work is  partially funded by the Labex ACTION program (contract ANR-11-LABX-01-01).
2132
2133
2134 \bibliographystyle{plain} 
2135 \bibliography{mabase}
2136 \end{document}