+
+The modulus operation is the most time consuming operation for current
+GPU cards. So in order to obtain quite reasonable performances, it is
+required to use only modulus on 32-bits integer numbers. Consequently
+$x_n^2$ need to be lesser than $2^{32}$, and thus the number $M$ must be
+lesser than $2^{16}$. So in practice we can choose prime numbers around
+256 that are congruent to 3 modulus 4. With 32-bits numbers, only the
+4 least significant bits of $x_n$ can be chosen (the maximum number of
+indistinguishable bits is lesser than or equals to
+$log_2(log_2(M))$). In other words, to generate a 32-bits number, we need to use
+8 times the BBS algorithm with possibly different combinations of $M$. This
+approach is not sufficient to be able to pass all the tests of TestU01,
+as small values of $M$ for the BBS lead to
+ small periods. So, in order to add randomness we have proceeded with
+the followings modifications.
+\begin{itemize}
+\item
+Firstly, we define 16 arrangement arrays instead of 2 (as described in
+Algorithm \ref{algo:gpu_kernel2}), but only 2 of them are used at each call of
+the PRNG kernels. In practice, the selection of combination
+arrays to be used is different for all the threads. It is determined
+by using the three last bits of two internal variables used by BBS.
+%This approach adds more randomness.
+In Algorithm~\ref{algo:bbs_gpu},
+character \& is for the bitwise AND. Thus using \&7 with a number
+gives the last 3 bits, thus providing a number between 0 and 7.
+\item
+Secondly, after the generation of the 8 BBS numbers for each thread, we
+have a 32-bits number whose period is possibly quite small. So
+to add randomness, we generate 4 more BBS numbers to
+shift the 32-bits numbers, and add up to 6 new bits. This improvement is
+described in Algorithm~\ref{algo:bbs_gpu}. In practice, the last 2 bits
+of the first new BBS number are used to make a left shift of at most
+3 bits. The last 3 bits of the second new BBS number are added to the
+strategy whatever the value of the first left shift. The third and the
+fourth new BBS numbers are used similarly to apply a new left shift
+and add 3 new bits.
+\item
+Finally, as we use 8 BBS numbers for each thread, the storage of these
+numbers at the end of the kernel is performed using a rotation. So,
+internal variable for BBS number 1 is stored in place 2, internal
+variable for BBS number 2 is stored in place 3, ..., and finally, internal
+variable for BBS number 8 is stored in place 1.
+\end{itemize}
+
+\begin{algorithm}
+\begin{small}
+\KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS
+in global memory\;
+NumThreads: Number of threads\;
+array\_comb: 2D Arrays containing 16 combinations (in first dimension) of size combination\_size (in second dimension)\;
+array\_shift[4]=\{0,1,3,7\}\;
+}
+
+\KwOut{NewNb: array containing random numbers in global memory}
+\If{threadId is concerned} {
+ retrieve data from InternalVarBBSArray[threadId] in local variables including shared memory and x\;
+ we consider that bbs1 ... bbs8 represent the internal states of the 8 BBS numbers\;
+ offset = threadIdx\%combination\_size\;
+ o1 = threadIdx-offset+array\_comb[bbs1\&7][offset]\;
+ o2 = threadIdx-offset+array\_comb[8+bbs2\&7][offset]\;
+ \For{i=1 to n} {
+ t$<<$=4\;
+ t|=BBS1(bbs1)\&15\;
+ ...\;
+ t$<<$=4\;
+ t|=BBS8(bbs8)\&15\;
+ \tcp{two new shifts}
+ shift=BBS3(bbs3)\&3\;
+ t$<<$=shift\;
+ t|=BBS1(bbs1)\&array\_shift[shift]\;
+ shift=BBS7(bbs7)\&3\;
+ t$<<$=shift\;
+ t|=BBS2(bbs2)\&array\_shift[shift]\;
+ t=t\textasciicircum shmem[o1]\textasciicircum shmem[o2]\;
+ shared\_mem[threadId]=t\;
+ x = x\textasciicircum t\;
+
+ store the new PRNG in NewNb[NumThreads*threadId+i]\;
+ }
+ store internal variables in InternalVarXorLikeArray[threadId] using a rotation\;
+}
+\end{small}
+\caption{main kernel for the BBS based PRNG GPU}
+\label{algo:bbs_gpu}
+\end{algorithm}
+
+In Algorithm~\ref{algo:bbs_gpu}, $n$ is for the quantity of random numbers that
+a thread has to generate. The operation t<<=4 performs a left shift of 4 bits
+on the variable $t$ and stores the result in $t$, and $BBS1(bbs1)\&15$ selects
+the last four bits of the result of $BBS1$. Thus an operation of the form
+$t<<=4; t|=BBS1(bbs1)\&15\;$ realizes in $t$ a left shift of 4 bits, and then
+puts the 4 last bits of $BBS1(bbs1)$ in the four last positions of $t$. Let us
+remark that the initialization $t$ is not a necessity as we fill it 4 bits by 4
+bits, until having obtained 32-bits. The two last new shifts are realized in
+order to enlarge the small periods of the BBS used here, to introduce a kind of
+variability. In these operations, we make twice a left shift of $t$ of \emph{at
+ most} 3 bits, represented by \texttt{shift} in the algorithm, and we put
+\emph{exactly} the \texttt{shift} last bits from a BBS into the \texttt{shift}
+last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
+correspondence between the shift and the number obtained with \texttt{shift} 1
+to make the \texttt{and} operation is used. For example, with a left shift of 0,
+we make an and operation with 0, with a left shift of 3, we make an and
+operation with 7 (represented by 111 in binary mode).
+
+It should be noticed that this generator has once more the form $x^{n+1} = x^n \oplus S^n$,
+where $S^n$ is referred in this algorithm as $t$: each iteration of this
+PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
+by secure bits produced by the BBS generator, and thus, due to
+Proposition~\ref{cryptopreuve}, the resulted PRNG is
+cryptographically secure.
+
+As stated before, even if the proposed PRNG is cryptocaphically
+secure, it does not mean that such a generator
+can be used as described here when attacks are
+awaited. The problem is to determine the minimum
+time required for an attacker, with a given
+computational power, to predict under a probability
+lower than 0.5 the $n+1$th bit, knowing the $n$
+previous ones. The proposed GPU generator will be
+useful in a security context, at least in some
+situations where a secret protected by a pseudorandom
+keystream is rapidly obsolete, if this time to
+predict the next bit is large enough when compared
+to both the generation and transmission times.
+It is true that the prime numbers used in the last
+section are very small compared to up-to-date
+security recommendations. However the attacker has not
+access to each BBS, but to the output produced
+by Algorithm~\ref{algo:bbs_gpu}, which is far
+more complicated than a simple BBS. Indeed, to
+determine if this cryptographically secure PRNG
+on GPU can be useful in security context with the
+proposed parameters, or if it is only a very fast
+and statistically perfect generator on GPU, its
+$(T,\varepsilon)-$security must be determined, and
+a formulation similar to Eq.\eqref{mesureConcrete}
+must be established. Authors
+hope to achieve this difficult task in a future
+work.
+
+
+\subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
+\label{Blum-Goldwasser}
+We finish this research work by giving some thoughts about the use of
+the proposed PRNG in an asymmetric cryptosystem.
+This first approach will be further investigated in a future work.
+
+\subsubsection{Recalls of the Blum-Goldwasser Probabilistic Cryptosystem}
+
+The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm
+proposed in 1984~\cite{Blum:1985:EPP:19478.19501}. The encryption algorithm
+implements a XOR-based stream cipher using the BBS PRNG, in order to generate
+the keystream. Decryption is done by obtaining the initial seed thanks to
+the final state of the BBS generator and the secret key, thus leading to the
+ reconstruction of the keystream.
+
+The key generation consists in generating two prime numbers $(p,q)$,
+randomly and independently of each other, that are
+ congruent to 3 mod 4, and to compute the modulus $N=pq$.
+The public key is $N$, whereas the secret key is the factorization $(p,q)$.
+
+
+Suppose Bob wishes to send a string $m=(m_0, \dots, m_{L-1})$ of $L$ bits to Alice:
+\begin{enumerate}
+\item Bob picks an integer $r$ randomly in the interval $\llbracket 1,N\rrbracket$ and computes $x_0 = r^2~mod~N$.
+\item He uses the BBS to generate the keystream of $L$ pseudorandom bits $(b_0, \dots, b_{L-1})$, as follows. For $i=0$ to $L-1$,
+\begin{itemize}
+\item $i=0$.
+\item While $i \leqslant L-1$:
+\begin{itemize}
+\item Set $b_i$ equal to the least-significant\footnote{As signaled previously, BBS can securely output up to $\mathsf{N} = \lfloor log(log(N)) \rfloor$ of the least-significant bits of $x_i$ during each round.} bit of $x_i$,
+\item $i=i+1$,
+\item $x_i = (x_{i-1})^2~mod~N.$
+\end{itemize}
+\end{itemize}
+\item The ciphertext is computed by XORing the plaintext bits $m$ with the keystream: $ c = (c_0, \dots, c_{L-1}) = m \oplus b$. This ciphertext is $[c, y]$, where $y=x_{0}^{2^{L}}~mod~N.$
+\end{enumerate}
+
+
+When Alice receives $\left[(c_0, \dots, c_{L-1}), y\right]$, she can recover $m$ as follows:
+\begin{enumerate}
+\item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$.
+\item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$.
+\item She recomputes the bit-vector $b$ by using BBS and $x_0$.
+\item Alice finally computes the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus b$.
+\end{enumerate}
+
+
+\subsubsection{Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser}
+
+We propose to adapt the Blum-Goldwasser protocol as follows.
+Let $\mathsf{N} = \lfloor log(log(N)) \rfloor$ be the number of bits that can
+be obtained securely with the BBS generator using the public key $N$ of Alice.
+Alice will pick randomly $S^0$ in $\llbracket 0, 2^{\mathsf{N}-1}\rrbracket$ too, and
+her new public key will be $(S^0, N)$.
+
+To encrypt his message, Bob will compute
+%%RAPH : ici, j'ai mis un simple $
+%\begin{equation}
+$c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$
+$ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$
+%%\end{equation}
+instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$.
+
+The same decryption stage as in Blum-Goldwasser leads to the sequence
+$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$.
+Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
+By doing so, the proposed generator is used in place of BBS, leading to
+the inheritance of all the properties presented in this paper.
+
+\section{Conclusion}