-In the litterature many authors have work on defining GPU based PRNGs. We do not
-want to be exhaustive and we just give the most significant works from our point
-of view. When authors mention the number of random numbers generated per second
-we mention it. We consider that a million numbers per second corresponds to
-1MSample/s and than a billion numbers per second corresponds to 1GSample/s.
-
-In \cite{Pang:2008:cec}, the authors define a PRNG based on cellular automata
-which does not require high precision integer arithmetics nor bitwise
-operations. There is no mention of statistical tests nor proof that this PRNG is
-chaotic. Concerning the speed of generation, they can generate about
-3.2MSample/s on a GeForce 7800 GTX GPU (which is quite old now).
+
+Numerous research works on defining GPU based PRNGs have yet been proposed in the
+literature, so that completeness is impossible.
+This is why authors of this document only give reference to the most significant attempts
+in this domain, from their subjective point of view.
+The quantity of pseudorandom numbers generated per second is mentioned here
+only when the information is given in the related work.
+A million numbers per second will be simply written as
+1MSample/s whereas a billion numbers per second is 1GSample/s.
+
+In \cite{Pang:2008:cec} a PRNG based on cellular automata is defined
+with no requirement to an high precision integer arithmetic or to any bitwise
+operations. Authors can generate about
+3.2MSample/s on a GeForce 7800 GTX GPU, which is quite an old card now.
+However, there is neither a mention of statistical tests nor any proof of
+chaos or cryptography in this document.