+\subsection{Qualitative relations between topological properties and statistical tests}
+
+
+There are various relations between topological properties that describe an unpredictable behavior for a discrete
+dynamical system on the one
+hand, and statistical tests to check the randomness of a numerical sequence
+on the other hand. These two mathematical disciplines follow a similar
+objective in case of a recurrent sequence (to characterize an intrinsically complicated behavior for a
+recurrent sequence), with two different but complementary approaches.
+It is true that the following illustrative links give only qualitative arguments,
+and proofs should be provided later to make such arguments irrefutable. However
+they give a first understanding of the reason why we think that chaotic properties should tend
+to improve the statistical quality of PRNGs.
+%
+Let us now list some of these relations between topological properties defined in the mathematical
+theory of chaos and tests embedded into the NIST battery. %Such relations need to be further
+%investigated, but they presently give a first illustration of a trend to search similar properties in the
+%two following fields: mathematical chaos and statistics.
+
+
+\begin{itemize}
+ \item \textbf{Regularity}. As stated in Section~\ref{subsec:Devaney}, a chaotic dynamical system must
+have an element of regularity. Depending on the chosen definition of chaos, this element can be the existence of
+a dense orbit, the density of periodic points, etc. The key idea is that a dynamical system with no periodicity
+is not as chaotic as a system having periodic orbits: in the first situation, we can predict something and gain a
+knowledge about the behavior of the system, that is, it never enters into a loop. A similar importance for periodicity is emphasized in
+the two following NIST tests~\cite{Nist10}:
+ \begin{itemize}
+ \item \textbf{Non-overlapping Template Matching Test}. Detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern.
+ \item \textbf{Discrete Fourier Transform (Spectral) Test}. Detect periodic features (i.e., repetitive patterns that are close one to another) in the tested sequence that would indicate a deviation from the assumption of randomness.
+ \end{itemize}
+
+\item \textbf{Transitivity}. This topological property previously introduced states that the dynamical system is intrinsically complicated: it cannot be simplified into
+two subsystems that do not interact, as we can find in any neighborhood of any point another point whose orbit visits the whole phase space.
+This focus on the places visited by the orbits of the dynamical system takes various nonequivalent formulations in the mathematical theory
+of chaos, namely: transitivity, strong transitivity, total transitivity, topological mixing, and so on~\cite{bg10:ij}. A similar attention
+is brought on the states visited during a random walk in the two tests below~\cite{Nist10}:
+ \begin{itemize}
+ \item \textbf{Random Excursions Variant Test}. Detect deviations from the expected number of visits to various states in the random walk.
+ \item \textbf{Random Excursions Test}. Determine if the number of visits to a particular state within a cycle deviates from what one would expect for a random sequence.
+ \end{itemize}
+
+\item \textbf{Chaos according to Li and Yorke}. Two points of the phase space $(x,y)$ define a couple of Li-Yorke when $\limsup_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))>0$ et $\liminf_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))=0$, meaning that their orbits always oscillate as the iterations pass. When a system is compact and contains an uncountable set of such points, it is claimed as chaotic according
+to Li-Yorke~\cite{Li75,Ruette2001}. A similar property is regarded in the following NIST test~\cite{Nist10}.
+ \begin{itemize}
+ \item \textbf{Runs Test}. To determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines whether the oscillation between such zeros and ones is too fast or too slow.
+ \end{itemize}
+ \item \textbf{Topological entropy}. The desire to formulate an equivalency of the thermodynamics entropy
+has emerged both in the topological and statistical fields. Once again, a similar objective has led to two different
+rewritting of an entropy based disorder: the famous Shannon definition of entropy is approximated in the statistical approach,
+whereas topological entropy is defined as follows:
+$x,y \in \mathcal{X}$ are $\varepsilon-$\emph{separated in time $n$} if there exists $k \leqslant n$ such that $d\left(f^{(k)}(x),f^{(k)}(y)\right)>\varepsilon$. Then $(n,\varepsilon)-$separated sets are sets of points that are all $\varepsilon-$separated in time $n$, which
+leads to the definition of $s_n(\varepsilon,Y)$, being the maximal cardinality of all $(n,\varepsilon)-$separated sets. Using these notations,
+the topological entropy is defined as follows: $$h_{top}(\mathcal{X},f) = \displaystyle{\lim_{\varepsilon \rightarrow 0} \Big[ \limsup_{n \rightarrow +\infty} \dfrac{1}{n} \log s_n(\varepsilon,\mathcal{X})\Big]}.$$
+This value measures the average exponential growth of the number of distinguishable orbit segments.
+In this sense, it measures the complexity of the topological dynamical system, whereas
+the Shannon approach comes to mind when defining the following test~\cite{Nist10}:
+ \begin{itemize}
+\item \textbf{Approximate Entropy Test}. Compare the frequency of the overlapping blocks of two consecutive/adjacent lengths ($m$ and $m+1$) against the expected result for a random sequence.
+ \end{itemize}
+
+ \item \textbf{Non-linearity, complexity}. Finally, let us remark that non-linearity and complexity are
+not only sought in general to obtain chaos, but they are also required for randomness, as illustrated by the two tests below~\cite{Nist10}.
+ \begin{itemize}
+\item \textbf{Binary Matrix Rank Test}. Check for linear dependence among fixed length substrings of the original sequence.
+\item \textbf{Linear Complexity Test}. Determine whether or not the sequence is complex enough to be considered random.
+ \end{itemize}
+\end{itemize}