-\documentclass{article}
+%\documentclass{article}
+\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{fullpage}
\begin{document}
\author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe
-Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
+Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}}
-\maketitle
+\IEEEcompsoctitleabstractindextext{
\begin{abstract}
In this paper we present a new pseudorandom number generator (PRNG) on
graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It
\end{abstract}
+}
+
+\maketitle
+
+\IEEEdisplaynotcompsoctitleabstractindextext
+\IEEEpeerreviewmaketitle
+
\section{Introduction}
Furthermore, we show that the proposed post-treatment preserves the
cryptographical security of the inputted PRNG, when this last has such a
property.
-Last, but not least, we propose a rewritting of the Blum-Goldwasser asymmetric
+Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric
key encryption protocol by using the proposed method.
The remainder of this paper is organized as follows. In Section~\ref{section:related
generator is cryptographically secure, then it is the case too for the
generator provided by the post-treatment.
Such a proof leads to the proposition of a cryptographically secure and
-chaotic generator on GPU based on the famous Blum Blum Shum
+chaotic generator on GPU based on the famous Blum Blum Shub
in Section~\ref{sec:CSGPU}, and to an improvement of the
Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}.
This research work ends by a conclusion section, in which the contribution is
\label{section:BASIC RECALLS}
This section is devoted to basic definitions and terminologies in the fields of
-topological chaos and chaotic iterations.
+topological chaos and chaotic iterations. We assume the reader is familiar
+with basic notions on topology (see for instance~\cite{Devaney}).
+
+
\subsection{Devaney's Chaotic Dynamical Systems}
In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
\mathcal{X} \rightarrow \mathcal{X}$.
\begin{definition}
-$f$ is said to be \emph{topologically transitive} if, for any pair of open sets
+The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
$U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
\varnothing$.
\end{definition}
\begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
-$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
+The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
topologically transitive.
\end{definition}
on a metric space $(\mathcal{X},d)$ by:
\begin{definition}
-\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions}
+\label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions}
if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
$d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
-$\delta$ is called the \emph{constant of sensitivity} of $f$.
+The constant $\delta$ is called the \emph{constant of sensitivity} of $f$.
\end{definition}
Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
are continuous. For further explanations, see, e.g., \cite{guyeux10}.
Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
-(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function:
-\begin{equation}
+(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function
+$F_{f}: \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}}
+\longrightarrow \mathds{B}^{\mathsf{N}}$
+\begin{equation*}
\begin{array}{lrll}
-F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} &
-\longrightarrow & \mathds{B}^{\mathsf{N}} \\
-& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta
-(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
+& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta
+(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
\end{array}%
-\end{equation}%
+\end{equation*}%
\noindent where + and . are the Boolean addition and product operations.
Consider the phase space:
\begin{equation}
possesses various chaos properties that none of the generators used as input
present.
+
\begin{algorithm}[h!]
-%\begin{scriptsize}
+\begin{small}
\KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
($n$ bits)}
\KwOut{a configuration $x$ ($n$ bits)}
$x\leftarrow{F_f(s,x)}$\;
}
return $x$\;
-%\end{scriptsize}
+\end{small}
\caption{PRNG with chaotic functions}
\label{CI Algorithm}
\end{algorithm}
+
+
+
\begin{algorithm}[h!]
+\begin{small}
\KwIn{the internal configuration $z$ (a 32-bit word)}
\KwOut{$y$ (a 32-bit word)}
$z\leftarrow{z\oplus{(z\ll13)}}$\;
$z\leftarrow{z\oplus{(z\ll5)}}$\;
$y\leftarrow{z}$\;
return $y$\;
-\medskip
+\end{small}
\caption{An arbitrary round of \textit{XORshift} algorithm}
\label{XORshift}
\end{algorithm}
\label{equation Oplus}
\end{equation}
where $\oplus$ is for the bitwise exclusive or between two integers.
-This rewritting can be understood as follows. The $n-$th term $S^n$ of the
+This rewriting can be understood as follows. The $n-$th term $S^n$ of the
sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
the list of cells to update in the state $x^n$ of the system (represented
as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th
\subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
\label{deuxième def}
Let us consider the discrete dynamical systems in chaotic iterations having
-the general form:
+the general form: $\forall n\in \mathds{N}^{\ast }$, $ \forall i\in
+\llbracket1;\mathsf{N}\rrbracket $,
\begin{equation}
-\forall n\in \mathds{N}^{\ast }, \forall i\in
-\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
+ x_i^n=\left\{
\begin{array}{ll}
x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\
\left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
-\begin{equation}
-\begin{array}{lrll}
-F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} &
-\longrightarrow & \mathds{B}^{\mathsf{N}} \\
-& (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi
-(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
+$F_{f}: \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}}
+\longrightarrow \mathds{B}^{\mathsf{N}}$
+\begin{equation*}
+\begin{array}{rll}
+ (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
\end{array}%
-\end{equation}%
+\end{equation*}%
where + and . are the Boolean addition and product operations, and $\overline{x}$
is the negation of the Boolean $x$.
Consider the phase space:
\end{equation}
\noindent and the map defined on $\mathcal{X}$:
\begin{equation}
-G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
+G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant...
\end{equation}
\noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
(S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
\label{nouveau d}
\end{equation}
-\noindent where
-\begin{equation}
-\left\{
-\begin{array}{lll}
-\displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
-}\delta (E_{k},\check{E}_{k})}\textrm{ is once more the Hamming distance}, \\
-\displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
-\sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
-\end{array}%
-\right.
-\end{equation}
+\noindent where $ \displaystyle{d_{e}(E,\check{E})} = \displaystyle{\sum_{k=1}^{\mathsf{N}%
+ }\delta (E_{k},\check{E}_{k})}$ is once more the Hamming distance, and
+$ \displaystyle{d_{s}(S,\check{S})} = \displaystyle{\dfrac{9}{\mathsf{N}}%
+ \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}$,
+%%RAPH : ici, j'ai supprimé tous les sauts à la ligne
+%% \begin{equation}
+%% \left\{
+%% \begin{array}{lll}
+%% \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
+%% }\delta (E_{k},\check{E}_{k})} \textrm{ is once more the Hamming distance}, \\
+%% \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
+%% \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
+%% \end{array}%
+%% \right.
+%% \end{equation}
where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
$A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
\noindent As a consequence, the $k+1$ first entries of the strategies of $%
G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
-10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline
+10^{-(k+1)}\leqslant \varepsilon $.
+
In conclusion,
-$$
-\forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}%
-,\forall n\geqslant N_{0},
- d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
+%%RAPH : ici j'ai rajouté une ligne
+$
+\forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}
+,$ $\forall n\geqslant N_{0},$
+$ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
\leqslant \varepsilon .
-$$
+$
$G_{f}$ is consequently continuous.
\end{proof}
claimed in the lemma.
\end{proof}
-We can now prove Theorem~\ref{t:chaos des general}...
+We can now prove the Theorem~\ref{t:chaos des general}.
\begin{proof}[Theorem~\ref{t:chaos des general}]
Firstly, strong transitivity implies transitivity.
that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
-of $S$ and the first $t_2$ terms of $S'$: $$\tilde
-S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
+of $S$ and the first $t_2$ terms of $S'$:
+%%RAPH : j'ai coupé la ligne en 2
+$$\tilde
+S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,$$$$\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
$t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
iterations can be inherited by the inputted generator, we hope by doing so to
obtain some statistical improvements while preserving speed.
-
-Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
-are
-done.
-Suppose that $x$ and the strategy $S^i$ are given as
-binary vectors.
-Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
-
-\begin{table}
-$$
-\begin{array}{|cc|cccccccccccccccc|}
-\hline
-x &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
-\hline
-S^i &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
-\hline
-x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
-\hline
-
-\hline
- \end{array}
-$$
-\caption{Example of an arbitrary round of the proposed generator}
-\label{TableExemple}
-\end{table}
-
-
-
-
-\lstset{language=C,caption={C code of the sequential PRNG based on chaotic iteration\
-s},label=algo:seqCIPRNG}
+%%RAPH : j'ai viré tout ca
+%% Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
+%% are
+%% done.
+%% Suppose that $x$ and the strategy $S^i$ are given as
+%% binary vectors.
+%% Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
+
+%% \begin{table}
+%% \begin{scriptsize}
+%% $$
+%% \begin{array}{|cc|cccccccccccccccc|}
+%% \hline
+%% x &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
+%% \hline
+%% S^i &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
+%% \hline
+%% x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
+%% \hline
+
+%% \hline
+%% \end{array}
+%% $$
+%% \end{scriptsize}
+%% \caption{Example of an arbitrary round of the proposed generator}
+%% \label{TableExemple}
+%% \end{table}
+
+
+
+
+\lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label=algo:seqCIPRNG}
+\begin{small}
\begin{lstlisting}
+
unsigned int CIPRNG() {
static unsigned int x = 123123123;
unsigned long t1 = xorshift();
return x;
}
\end{lstlisting}
-
+\end{small}
implementation of the xor128, the xorshift, and the xorwow respectively require
4, 5, and 6 unsigned long as internal variables.
-\begin{algorithm}
+\begin{algorithm}
+\begin{small}
\KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
PRNGs in global memory\;
NumThreads: number of threads\;}
}
store internal variables in InternalVarXorLikeArray[threadIdx]\;
}
-
+\end{small}
\caption{Main kernel of the GPU ``naive'' version of the PRNG based on chaotic iterations}
\label{algo:gpu_kernel}
\end{algorithm}
+
+
Algorithm~\ref{algo:gpu_kernel} presents a naive implementation of the proposed PRNG on
GPU. Due to the available memory in the GPU and the number of threads
-used simultenaously, the number of random numbers that a thread can generate
+used simultaneously, the number of random numbers that a thread can generate
inside a kernel is limited (\emph{i.e.}, the variable \texttt{n} in
algorithm~\ref{algo:gpu_kernel}). For instance, if $100,000$ threads are used and
if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)},
This version can also pass the whole {\it BigCrush} battery of tests.
\begin{algorithm}
-
+\begin{small}
\KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
in global memory\;
NumThreads: Number of threads\;
}
store internal variables in InternalVarXorLikeArray[threadId]\;
}
-
+\end{small}
\caption{Main kernel for the chaotic iterations based PRNG GPU efficient
version\label{IR}}
\label{algo:gpu_kernel2}
\begin{figure}[htbp]
\begin{center}
- \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
+ \includegraphics[width=\columnwidth]{curve_time_xorlike_gpu.pdf}
\end{center}
\caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
\label{fig:time_xorlike_gpu}
\begin{figure}[htbp]
\begin{center}
- \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
+ \includegraphics[width=\columnwidth]{curve_time_bbs_gpu.pdf}
\end{center}
\caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
\label{fig:time_bbs_gpu}
denoted by $uv$.
In a cryptographic context, a pseudorandom generator is a deterministic
algorithm $G$ transforming strings into strings and such that, for any
-seed $k$ of length $k$, $G(k)$ (the output of $G$ on the input $k$) has size
-$\ell_G(k)$ with $\ell_G(k)>k$.
+seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size
+$\ell_G(m)$ with $\ell_G(m)>m$.
The notion of {\it secure} PRNGs can now be defined as follows.
\begin{definition}
A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
algorithm $D$, for any positive polynomial $p$, and for all sufficiently
-large $k$'s,
-$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)})=1]|< \frac{1}{p(k)},$$
+large $m$'s,
+$$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$
where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
-probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
+probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the
internal coin tosses of $D$.
\end{definition}
negligible probability. The interested reader is referred
to~\cite[chapter~3]{Goldreich} for more information. Note that it is
quite easily possible to change the function $\ell$ into any polynomial
-function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
+function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
The generation schema developed in (\ref{equation Oplus}) is based on a
pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
one has
+$\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and,
+therefore,
\begin{equation}\label{PCH-2}
-\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
+\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1].
\end{equation}
Now, using (\ref{PCH-1}) again, one has for every $x$,
\end{equation}
where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
thus
-\begin{equation}\label{PCH-3}
+\begin{equation}%\label{PCH-3} %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant
D^\prime(H(x))=D(yx),
\end{equation}
where $y$ is randomly generated.
algorithm (Algorithm~\ref{algo:gpu_kernel2}). Due to Proposition~\ref{cryptopreuve},
it simply consists in replacing
the {\it xor-like} PRNG by a cryptographically secure one.
-We have chosen the Blum Blum Shum generator~\cite{BBS} (usually denoted by BBS) having the form:
+We have chosen the Blum Blum Shub generator~\cite{BBS} (usually denoted by BBS) having the form:
$$x_{n+1}=x_n^2~ mod~ M$$ where $M$ is the product of two prime numbers (these
prime numbers need to be congruent to 3 modulus 4). BBS is known to be
very slow and only usable for cryptographic applications.
indistinguishable bits is lesser than or equals to
$log_2(log_2(M))$). In other words, to generate a 32-bits number, we need to use
8 times the BBS algorithm with possibly different combinations of $M$. This
-approach is not sufficient to be able to pass all the TestU01,
+approach is not sufficient to be able to pass all the tests of TestU01,
as small values of $M$ for the BBS lead to
small periods. So, in order to add randomness we have proceeded with
the followings modifications.
\end{itemize}
\begin{algorithm}
-
+\begin{small}
\KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS
in global memory\;
NumThreads: Number of threads\;
}
store internal variables in InternalVarXorLikeArray[threadId] using a rotation\;
}
-
+\end{small}
\caption{main kernel for the BBS based PRNG GPU}
\label{algo:bbs_gpu}
\end{algorithm}
most} 3 bits, represented by \texttt{shift} in the algorithm, and we put
\emph{exactly} the \texttt{shift} last bits from a BBS into the \texttt{shift}
last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
-correspondance between the shift and the number obtained with \texttt{shift} 1
+correspondence between the shift and the number obtained with \texttt{shift} 1
to make the \texttt{and} operation is used. For example, with a left shift of 0,
we make an and operation with 0, with a left shift of 3, we make an and
operation with 7 (represented by 111 in binary mode).
+\begin{color}{red}
+\subsection{Practical Security Evaluation}
+
+Suppose now that the PRNG will work during
+$M=100$ time units, and that during this period,
+an attacker can realize $10^{12}$ clock cycles.
+We thus wonder whether, during the PRNG's
+lifetime, the attacker can distinguish this
+sequence from truly random one, with a probability
+greater than $\varepsilon = 0.2$.
+We consider that $N$ has 900 bits.
+
+The random process is the BBS generator, which
+is cryptographically secure. More precisely, it
+is $(T,\varepsilon)-$secure: no
+$(T,\varepsilon)-$distinguishing attack can be
+successfully realized on this PRNG, if~\cite{Fischlin}
+$$
+T \leqslant \dfrac{L(N)}{6 N (log_2(N))\varepsilon^{-2}M^2}-2^7 N \varepsilon^{-2} M^2 log_2 (8 N \varepsilon^{-1}M)
+$$
+where $M$ is the length of the output ($M=100$ in
+our example), and $L(N)$ is equal to
+$$
+2.8\times 10^{-3} exp \left(1.9229 \times (N ~ln(2)^\frac{1}{3}) \times ln(N~ln 2)^\frac{2}{3}\right)
+$$
+is the number of clock cycles to factor a $N-$bit
+integer.
+
+A direct numerical application shows that this attacker
+cannot achieve its $(10^{12},0.2)$ distinguishing
+attack in that context.
+
+\end{color}
+
\subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
\label{Blum-Goldwasser}
We finish this research work by giving some thoughts about the use of
her new public key will be $(S^0, N)$.
To encrypt his message, Bob will compute
-\begin{equation}
-c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)
-\end{equation}
+%%RAPH : ici, j'ai mis un simple $
+%\begin{equation}
+$c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$
+$ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$
+%%\end{equation}
instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$.
The same decryption stage as in Blum-Goldwasser leads to the sequence
Furthermore, we have shown that when the inputted generator is cryptographically
secure, then it is the case too for the PRNG we propose, thus leading to
the possibility to develop fast and secure PRNGs using the GPU architecture.
-Thoughts about an improvement of the Blum-Goldwasser cryptosystem, using the
-proposed method, has been finally proposed.
+\begin{color}{red} An improvement of the Blum-Goldwasser cryptosystem, making it
+behaves chaotically, has finally been proposed. \end{color}
-In future work we plan to extend these researches, building a parallel PRNG for clusters or
+In future work we plan to extend this research, building a parallel PRNG for clusters or
grid computing. Topological properties of the various proposed generators will be investigated,
and the use of other categories of PRNGs as input will be studied too. The improvement
of Blum-Goldwasser will be deepened. Finally, we