-
-\subsubsection{Tests based on the Mixed CIPRNG}
-
-To compare the previous approach with the CIPRNG design that uses a Mixed CIPRNG, we have taken into account the same inputted generators than in the previous section.
-These inputted couples $(PRNG_1,PRNG_2)$ of PRNGs are used in the Mixed approach as follows:
-\begin{equation}
-\left\{
-\begin{array}{l}
-x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
-\forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus PRNG_1\oplus PRNG_2,
-\end{array}
-\right.
-\label{equation Oplus}
-\end{equation}
-
-With this Mixed CIPRNG approach, both the Old CIPRNG and New CIPRNG continue to pass all the NIST and DieHARD suites.
-In addition, we can see that the PRNGs using a Xor CIPRNG approach can pass more tests than previously.
-The main reason of this success is that the Mixed Xor CIPRNG has a longer period.
-Indeed, let $n_{P}$ be the period of a PRNG $P$, then the period deduced from the single Xor CIPRNG approach is obviously equal to:
-\begin{equation}
-n_{SXORCI}=
-\left\{
-\begin{array}{ll}
-n_{P}&\text{if~}x^0=x^{n_{P}}\\
-2n_{P}&\text{if~}x^0\neq x^{n_{P}}.\\
-\end{array}
-\right.
-\label{equation Oplus}
-\end{equation}
-
-Let us now denote by $n_{P1}$ and $n_{P2}$ the periods of respectively the $PRNG_1$ and $PRNG_2$ generators, then the period of the Mixed Xor CIPRNG will be:
-\begin{equation}
-n_{XXORCI}=
-\left\{
-\begin{array}{ll}
-LCM(n_{P1},n_{P2})&\text{if~}x^0=x^{LCM(n_{P1},n_{P2})}\\
-2LCM(n_{P1},n_{P2})&\text{if~}x^0\neq x^{LCM(n_{P1},n_{P2})}.\\
-\end{array}
-\right.
-\label{equation Oplus}
-\end{equation}
-
-In Table~\ref{DieHARD fail mixex CIPRNG}, we only show the results for the Mixed CIPRNGs that cannot pass all DieHARD suites (the NIST tests are all passed). It demonstrates that Mixed Xor CIPRNG involving LCG, MRG, LCG2, LCG3, MRG2, or INV cannot pass the two following tests, namely the ``Matrix Rank 32x32'' and the ``COUNT-THE-1's'' tests contained into the DieHARD battery. Let us recall their definitions:
-
-\begin{itemize}
- \item \textbf{Matrix Rank 32x32.} A random 32x32 binary matrix is formed, each row having a 32-bit random vector. Its rank is an integer that ranges from 0 to 32. Ranks less than 29 must be rare, and their occurences must be pooled with those of rank 29. To achieve the test, ranks of 40,000 such random matrices are obtained, and a chisquare test is performed on counts for ranks 32,31,30 and for ranks $\leq29$.
-
- \item \textbf{COUNT-THE-1's TEST} Consider the file under test as a stream of bytes (four per 2 bit integer). Each byte can contain from 0 to 8 1's, with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let the stream of bytes provide a string of overlapping 5-letter words, each ``letter'' taking values A,B,C,D,E. The letters are determined by the number of 1's in a byte: 0,1, or 2 yield A, 3 yields B, 4 yields C, 5 yields D and 6,7, or 8 yield E. Thus we have a monkey at a typewriter hitting five keys with various probabilities (37,56,70,56,37 over 256). There are $5^5$ possible 5-letter words, and from a string of 256,000 (over-lapping) 5-letter words, counts are made on the frequencies for each word. The quadratic form in the weak inverse of the covariance matrix of the cell counts provides a chisquare test: Q5-Q4, the difference of the naive Pearson sums of $(OBS-EXP)^2/EXP$ on counts for 5- and 4-letter cell counts.
-\end{itemize}
-
-The reason of these fails is that the output of LCG, LCG2, LCG3, MRG, and MRG2 under the experiments are in 31-bit. Compare with the Single CIPRNG, using different PRNGs to build CIPRNG seems more efficient in improving random number quality (mixed Xor CI can 100\% pass NIST, but single cannot).