]> AND Private Git Repository - prng_gpu.git/blobdiff - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
pch
[prng_gpu.git] / prng_gpu.tex
index 4feac7cc64b8730163298a05ba2edca48d894eeb..0a88df58f8b1204d8d1f118090fd03f9bcdb229c 100644 (file)
@@ -216,7 +216,10 @@ We can finally remark that, to the best of our knowledge, no GPU implementation
 \label{section:BASIC RECALLS}
 
 This section is devoted to basic definitions and terminologies in the fields of
 \label{section:BASIC RECALLS}
 
 This section is devoted to basic definitions and terminologies in the fields of
-topological chaos and chaotic iterations.
+topological chaos and chaotic iterations. We assume the reader is familiar
+with basic notions on topology (see for instance~\cite{Devaney}).
+
+
 \subsection{Devaney's Chaotic Dynamical Systems}
 
 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
 \subsection{Devaney's Chaotic Dynamical Systems}
 
 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
@@ -229,7 +232,7 @@ Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
 \mathcal{X} \rightarrow \mathcal{X}$.
 
 \begin{definition}
 \mathcal{X} \rightarrow \mathcal{X}$.
 
 \begin{definition}
-$f$ is said to be \emph{topologically transitive} if, for any pair of open sets
+The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets
 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
 \varnothing$.
 \end{definition}
 $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
 \varnothing$.
 \end{definition}
@@ -248,7 +251,7 @@ necessarily the same period).
 
 
 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
 
 
 \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
-$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
+The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
 topologically transitive.
 \end{definition}
 
 topologically transitive.
 \end{definition}
 
@@ -256,12 +259,12 @@ The chaos property is strongly linked to the notion of ``sensitivity'', defined
 on a metric space $(\mathcal{X},d)$ by:
 
 \begin{definition}
 on a metric space $(\mathcal{X},d)$ by:
 
 \begin{definition}
-\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions}
+\label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions}
 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
 
 if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
 neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
 $d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
 
-$\delta$ is called the \emph{constant of sensitivity} of $f$.
+The constant $\delta$ is called the \emph{constant of sensitivity} of $f$.
 \end{definition}
 
 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
 \end{definition}
 
 Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
@@ -786,7 +789,7 @@ where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
 claimed in the lemma.
 \end{proof}
 
 claimed in the lemma.
 \end{proof}
 
-We can now prove the Theorem~\ref{t:chaos des general}...
+We can now prove the Theorem~\ref{t:chaos des general}.
 
 \begin{proof}[Theorem~\ref{t:chaos des general}]
 Firstly, strong transitivity implies transitivity.
 
 \begin{proof}[Theorem~\ref{t:chaos des general}]
 Firstly, strong transitivity implies transitivity.
@@ -1092,13 +1095,12 @@ As a  comparison,   Listing~\ref{algo:seqCIPRNG}  leads   to the  generation of
 
 
 
 
 
 
-In Figure~\ref{fig:time_bbs_gpu}  we highlight the performances  of the optimized
-BBS-based  PRNG on GPU. On the  Tesla C1060 we
-obtain approximately 700MSample/s and on the GTX 280 about 670MSample/s, which is
-obviously slower than the xorlike-based PRNG on GPU. However, we will show in the 
-next sections that 
-this new PRNG has a strong level of security, which is necessary paid by a speed
-reduction. 
+In Figure~\ref{fig:time_bbs_gpu} we highlight  the performances of the optimized
+BBS-based PRNG on GPU.  On  the Tesla C1060 we obtain approximately 700MSample/s
+and  on the  GTX 280  about  670MSample/s, which  is obviously  slower than  the
+xorlike-based PRNG on GPU. However, we  will show in the next sections that this
+new PRNG  has a strong  level of  security, which is  necessary paid by  a speed
+reduction.
 
 \begin{figure}[htbp]
 \begin{center}
 
 \begin{figure}[htbp]
 \begin{center}
@@ -1130,17 +1132,17 @@ In this section the concatenation of two strings $u$ and $v$ is classically
 denoted by $uv$.
 In a cryptographic context, a pseudorandom generator is a deterministic
 algorithm $G$ transforming strings  into strings and such that, for any
 denoted by $uv$.
 In a cryptographic context, a pseudorandom generator is a deterministic
 algorithm $G$ transforming strings  into strings and such that, for any
-seed $k$ of length $k$, $G(k)$ (the output of $G$ on the input $k$) has size
-$\ell_G(k)$ with $\ell_G(k)>k$.
+seed $m$ of length $m$, $G(m)$ (the output of $G$ on the input $m$) has size
+$\ell_G(m)$ with $\ell_G(m)>m$.
 The notion of {\it secure} PRNGs can now be defined as follows. 
 
 \begin{definition}
 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
 The notion of {\it secure} PRNGs can now be defined as follows. 
 
 \begin{definition}
 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
-large $k$'s,
-$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)})=1]|< \frac{1}{p(k)},$$
+large $m$'s,
+$$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$
 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
-probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
+probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the
 internal coin tosses of $D$. 
 \end{definition}
 
 internal coin tosses of $D$. 
 \end{definition}
 
@@ -1149,7 +1151,7 @@ distinguish a perfect uniform random generator from $G$ with a non
 negligible probability. The interested reader is referred
 to~\cite[chapter~3]{Goldreich} for more information. Note that it is
 quite easily possible to change the function $\ell$ into any polynomial
 negligible probability. The interested reader is referred
 to~\cite[chapter~3]{Goldreich} for more information. Note that it is
 quite easily possible to change the function $\ell$ into any polynomial
-function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
+function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
 
 The generation schema developed in (\ref{equation Oplus}) is based on a
 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
 
 The generation schema developed in (\ref{equation Oplus}) is based on a
 pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
@@ -1339,20 +1341,24 @@ on the variable  $t$ and stores the result in  $t$, and $BBS1(bbs1)\&15$ selects
 the last  four bits  of the  result of $BBS1$.   Thus an  operation of  the form
 $t<<=4; t|=BBS1(bbs1)\&15\;$  realizes in $t$ a  left shift of 4  bits, and then
 puts the 4 last bits of $BBS1(bbs1)$  in the four last positions of $t$.  Let us
 the last  four bits  of the  result of $BBS1$.   Thus an  operation of  the form
 $t<<=4; t|=BBS1(bbs1)\&15\;$  realizes in $t$ a  left shift of 4  bits, and then
 puts the 4 last bits of $BBS1(bbs1)$  in the four last positions of $t$.  Let us
-remark that to initialize $t$ is not a necessity as we fill it 4 bits by 4 bits,
-until having obtained 32-bits.  The two last new shifts are realized in order to
-enlarge  the  small periods  of  the  BBS used  here,  to  introduce  a kind  of
+remark that the initialization $t$ is not a  necessity as we fill it 4 bits by 4
+bits, until  having obtained 32-bits.  The  two last new shifts  are realized in
+order to enlarge the small periods of  the BBS used here, to introduce a kind of
 variability.  In these operations, we make twice a left shift of $t$ of \emph{at
   most}  3 bits,  represented by  \texttt{shift} in  the algorithm,  and  we put
 \emph{exactly} the \texttt{shift}  last bits from a BBS  into the \texttt{shift}
 variability.  In these operations, we make twice a left shift of $t$ of \emph{at
   most}  3 bits,  represented by  \texttt{shift} in  the algorithm,  and  we put
 \emph{exactly} the \texttt{shift}  last bits from a BBS  into the \texttt{shift}
-last bits of $t$.
+last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
+correspondance between the  shift and the number obtained  with \texttt{shift} 1
+to make the \texttt{and} operation is used. For example, with a left shift of 0,
+we  make an  and operation  with 0,  with  a left  shift of  3, we  make an  and
+operation with 7 (represented by 111 in binary mode).
 
 
-It should  be noticed that this generator has another time the form $x^{n+1} = x^n \oplus S^n$,
+It should  be noticed that this generator has once more the form $x^{n+1} = x^n \oplus S^n$,
 where $S^n$ is referred in this algorithm as $t$: each iteration of this
 PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
 by secure bits produced by the BBS generator, and thus, due to
 Proposition~\ref{cryptopreuve}, the resulted PRNG is cryptographically
 where $S^n$ is referred in this algorithm as $t$: each iteration of this
 PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
 by secure bits produced by the BBS generator, and thus, due to
 Proposition~\ref{cryptopreuve}, the resulted PRNG is cryptographically
-secure
+secure.