\newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
+\begin{document}
+\begin{frontmatter}
+\title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
+
+
+\author{Jacques M. Bahi}
+\ead{jacques.bahi@univ-fcomte.fr}
+\author{ Rapha\"{e}l Couturier \corref{cor1}}
+\ead{raphael.couturier@univ-fcomte.fr}
+\cortext[cor1]{Corresponding author}
+\author{ Christophe Guyeux}
+\ead{christophe.guyeux@univ-fcomte.fr}
+\author{ Pierre-Cyrille Héam }
+\ead{pierre-cyrille.heam@univ-fcomte.fr}
+
+\address{FEMTO-ST Institute, UMR 6174 CNRS,\\ University of Franche Comte, Belfort, France\\ Authors in alphabetic order}
-\title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
-\begin{document}
-\author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe
-Guyeux, and Pierre-Cyrille Héam*\\ FEMTO-ST Institute, UMR 6174 CNRS,\\ University of Franche-Comt\'{e}, Besan\c con, France\\ * Authors in alphabetic order}
-
%\IEEEcompsoctitleabstractindextext{
\begin{abstract}
\end{abstract}
%}
+\begin{keyword}
+ pseudo random number\sep parallelization\sep GPU\sep cryptography\sep chaos
+
+\end{keyword}
+\end{frontmatter}
-\maketitle
+%\maketitle
%\IEEEdisplaynotcompsoctitleabstractindextext
%\IEEEpeerreviewmaketitle
than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better
statistical behavior). Experiments are also provided using BBS as the initial
random generator. The generation speed is significantly weaker.
-Note also that an original qualitative comparison between topological chaotic
-properties and statistical tests is also proposed.
+%Note also that an original qualitative comparison between topological chaotic
+%properties and statistical tests is also proposed.
$\mathcal{D}$ is called a $(T,\varepsilon)-$distinguishing attack on pseudorandom
generator $G$ if
-\begin{flushleft}
-$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right.$
-\end{flushleft}
-
-\begin{flushright}
-$ - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$
-\end{flushright}
-
+$$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right. - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$$
\noindent where the probability is taken over the internal coin flips of $\mathcal{D}$, and the notation
``$\in_R$'' indicates the process of selecting an element at random and uniformly over the
corresponding set.