]> AND Private Git Repository - prng_gpu.git/blobdiff - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Relecture jusqu'à la page 9.
[prng_gpu.git] / prng_gpu.tex
index 96098bb9f32b9db4333a8a27f4d48ccc83d6d024..84efafa5443f23f4504a723320ec63e7c2f36b49 100644 (file)
 
 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
 
 
 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
 
-\title{Efficient generation of pseudo random numbers based on chaotic iterations
-on GPU}
+\title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
 \begin{document}
 
 \begin{document}
 
-\author{Jacques M. Bahi, Rapha\"{e}l Couturier, and Christophe
-Guyeux\thanks{Authors in alphabetic order}}
-
+\author{Jacques M. Bahi, Rapha\"{e}l Couturier,  Christophe
+Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
+   
 \maketitle
 
 \begin{abstract}
 \maketitle
 
 \begin{abstract}
-This is the abstract
+In this paper we present a new pseudorandom number generator (PRNG) on
+graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
+is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
+implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
+battery of tests in TestU01.  Experiments show that this PRNG can generate
+about 20 billions of random numbers  per second on Tesla C1060 and NVidia GTX280
+cards.
+It is finally established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
+secure.
+
+
 \end{abstract}
 
 \section{Introduction}
 
 \end{abstract}
 
 \section{Introduction}
 
-Interet des itérations chaotiques pour générer des nombre alea\\
-Interet de générer des nombres alea sur GPU
-\alert{RC, un petit state-of-the-art sur les PRNGs sur GPU ?}
-...
-
+Randomness is of importance in many fields as scientific simulations or cryptography. 
+``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
+called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
+process having all the characteristics of a random noise, called a truly random number
+generator (TRNG). 
+In this paper, we focus on reproducible generators, useful for instance in
+Monte-Carlo based simulators or in several cryptographic schemes.
+These domains need PRNGs that are statistically irreproachable. 
+On some fields as in numerical simulations, speed is a strong requirement
+that is usually attained by using parallel architectures. In that case,
+a recurrent problem is that a deflate of the statistical qualities is often
+reported, when the parallelization of a good PRNG is realized.
+This is why ad-hoc PRNGs for each possible architecture must be found to
+achieve both speed and randomness.
+On the other side, speed is not the main requirement in cryptography: the great
+need is to define \emph{secure} generators being able to withstand malicious
+attacks. Roughly speaking, an attacker should not be able in practice to make 
+the distinction between numbers obtained with the secure generator and a true random
+sequence. 
+Finally, a small part of the community working in this domain focus on a
+third requirement, that is to define chaotic generators.
+The main idea is to take benefits from a chaotic dynamical system to obtain a
+generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
+Their desire is to map a given chaotic dynamics into a sequence that seems random 
+and unassailable due to chaos.
+However, the chaotic maps used as a pattern are defined in the real line 
+whereas computers deal with finite precision numbers.
+This distortion leads to a deflation of both chaotic properties and speed.
+Furthermore, authors of such chaotic generators often claim their PRNG
+as secure due to their chaos properties, but there is no obvious relation
+between chaos and security as it is understood in cryptography.
+This is why the use of chaos for PRNG still remains marginal and disputable.
+
+The authors' opinion is that topological properties of disorder, as they are
+properly defined in the mathematical theory of chaos, can reinforce the quality
+of a PRNG. But they are not substitutable for security or statistical perfection.
+Indeed, to the authors' point of view, such properties can be useful in the two following situations. On the
+one hand, a post-treatment based on a chaotic dynamical system can be applied
+to a PRNG statistically deflective, in order to improve its statistical 
+properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
+On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
+cryptographically secure one, in case where chaos can be of interest,
+\emph{only if these last properties are not lost during
+the proposed post-treatment}. Such an assumption is behind this research work.
+It leads to the attempts to define a 
+family of PRNGs that are chaotic while being fast and statistically perfect,
+or cryptographically secure.
+Let us finish this paragraph by noticing that, in this paper, 
+statistical perfection refers to the ability to pass the whole 
+{\it BigCrush} battery of tests, which is widely considered as the most
+stringent statistical evaluation of a sequence claimed as random.
+This battery can be found into the well-known TestU01 package~\cite{LEcuyerS07}.
+Chaos, for its part, refers to the well-established definition of a
+chaotic dynamical system proposed by Devaney~\cite{Devaney}.
+
+
+In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
+as a chaotic dynamical system. Such a post-treatment leads to a new category of
+PRNGs. We have shown that proofs of Devaney's chaos can be established for this
+family, and that the sequence obtained after this post-treatment can pass the
+NIST~\cite{Nist10}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} batteries of tests, even if the inputted generators
+cannot.
+The proposition of this paper is to improve widely the speed of the formerly
+proposed generator, without any lack of chaos or statistical properties.
+In particular, a version of this PRNG on graphics processing units (GPU)
+is proposed.
+Although GPU was initially designed  to accelerate
+the manipulation of  images, they are nowadays commonly  used in many scientific
+applications. Therefore,  it is important  to be able to  generate pseudorandom
+numbers inside a GPU when a scientific application runs in it. This remark
+motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
+Such device
+allows us to generated almost 20 billions of pseudorandom numbers per second.
+Last, but not least, we show that the proposed post-treatment preserves the
+cryptographical security of the inputted PRNG, when this last has such a 
+property.
+
+The remainder of this paper  is organized as follows. In Section~\ref{section:related
+  works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
+  RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
+  and on an iteration process called ``chaotic
+iterations'' on which the post-treatment is based. 
+Proofs of chaos are given in  Section~\ref{sec:pseudorandom}.
+Section~\ref{sec:efficient    prng}   presents   an   efficient
+implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient prng
+  gpu}   describes   the  GPU   implementation. 
+Such generators are experimented in 
+Section~\ref{sec:experiments}.
+We show in Section~\ref{sec:security analysis} that, if the inputted
+generator is cryptographically secure, then it is the case too for the
+generator provided by the post-treatment.
+Such a proof leads to the proposition of a cryptographically secure and
+chaotic generator on GPU based on the famous Blum Blum Shum
+in Section~\ref{sec:CSGPU}.
+This research work ends by a conclusion section, in which the contribution is
+summarized and intended future work is presented.
+
+
+
+
+\section{Related works on GPU based PRNGs}
+\label{section:related works}
+
+Numerous research works on defining GPU based PRNGs have yet been proposed  in the
+literature, so that completeness is impossible.
+This is why authors of this document only give reference to the most significant attempts 
+in this domain, from their subjective point of view. 
+The  quantity of pseudorandom numbers generated per second is mentioned here 
+only when the information is given in the related work. 
+A million numbers  per second will be simply written as
+1MSample/s whereas a billion numbers per second is 1GSample/s.
+
+In \cite{Pang:2008:cec}  a PRNG based on  cellular automata is defined
+with no  requirement to an high  precision  integer   arithmetic  or to any bitwise
+operations. Authors can   generate  about
+3.2MSamples/s on a GeForce 7800 GTX GPU, which is quite an old card now.
+However, there is neither a mention of statistical tests nor any proof of
+chaos or cryptography in this document.
+
+In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
+based on  Lagged Fibonacci or Hybrid  Taus.  They have  used these
+PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
+GPU. Performance of  the GPU versions are far better than  those obtained with a
+CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01. 
+However the evaluations of the proposed PRNGs are only statistical ones.
+
+
+Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
+PRNGs on  different computing architectures: CPU,  field-programmable gate array
+(FPGA), massively parallel  processors, and GPU. This study is of interest, because
+the  performance  of the  same  PRNGs on  different architectures are compared. 
+FPGA appears as  the  fastest  and the most
+efficient architecture, providing the fastest number of generated pseudorandom numbers
+per joule. 
+However, we can notice that authors can ``only'' generate between 11 and 16GSamples/s
+with a GTX 280  GPU, which should be compared with
+the results presented in this document.
+We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
+able to pass the {\it Crush} battery, which is very easy compared to the {\it Big Crush} one.
+
+Lastly, Cuda  has developed  a  library for  the  generation of  pseudorandom numbers  called
+Curand~\cite{curand11}.        Several       PRNGs        are       implemented, among
+other things 
+Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. The  tests reported show that
+their  fastest version provides  15GSamples/s on  the new  Fermi C2050  card. 
+But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).
+\newline
+\newline
+We can finally remark that, to the best of our knowledge, no GPU implementation have been proven to be chaotic, and the cryptographically secure property is surprisingly never regarded.
 
 \section{Basic Recalls}
 \label{section:BASIC RECALLS}
 
 \section{Basic Recalls}
 \label{section:BASIC RECALLS}
+
 This section is devoted to basic definitions and terminologies in the fields of
 topological chaos and chaotic iterations.
 This section is devoted to basic definitions and terminologies in the fields of
 topological chaos and chaotic iterations.
-\subsection{Devaney's chaotic dynamical systems}
+\subsection{Devaney's Chaotic Dynamical Systems}
 
 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
 
 In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
 denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
-denotes the $k^{th}$ composition of a function $f$. Finally, the following
+is for the $k^{th}$ composition of a function $f$. Finally, the following
 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
 
 
 notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
 
 
@@ -89,7 +243,7 @@ necessarily the same period).
 \end{definition}
 
 
 \end{definition}
 
 
-\begin{definition}
+\begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
 $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
 topologically transitive.
 \end{definition}
 $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
 topologically transitive.
 \end{definition}
@@ -119,7 +273,7 @@ possible and occur in an unpredictable way.
 
 
 
 
 
 
-\subsection{Chaotic iterations}
+\subsection{Chaotic Iterations}
 \label{sec:chaotic iterations}
 
 
 \label{sec:chaotic iterations}
 
 
@@ -135,7 +289,7 @@ denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
 \label{Def:chaotic iterations}
 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
 \label{Def:chaotic iterations}
 The      set       $\mathds{B}$      denoting      $\{0,1\}$,      let
 $f:\mathds{B}^{\mathsf{N}}\longrightarrow  \mathds{B}^{\mathsf{N}}$ be
-a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  strategy.  The  so-called
+a  function  and  $S\in  \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$  be  a  ``strategy''.  The  so-called
 \emph{chaotic      iterations}     are     defined      by     $x^0\in
 \mathds{B}^{\mathsf{N}}$ and
 \begin{equation}
 \emph{chaotic      iterations}     are     defined      by     $x^0\in
 \mathds{B}^{\mathsf{N}}$ and
 \begin{equation}
@@ -155,7 +309,7 @@ $\left(f(x^{n-1})\right)_{S^{n}}$      can     be      replaced     by
 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
 $\left(f(x^{k})\right)_{S^{n}}$, where  $k<n$, describing for example,
 delays  transmission~\cite{Robert1986,guyeux10}.  Finally,  let us  remark that
 the term  ``chaotic'', in  the name of  these iterations,  has \emph{a
-priori} no link with the mathematical theory of chaos, recalled above.
+priori} no link with the mathematical theory of chaos, presented above.
 
 
 Let us now recall how to define a suitable metric space where chaotic iterations
 
 
 Let us now recall how to define a suitable metric space where chaotic iterations
@@ -185,8 +339,8 @@ G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
 (S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
 \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function} 
 $i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
-1;\mathsf{N}\rrbracket$. Then the chaotic iterations defined in
-(\ref{sec:chaotic iterations}) can be described by the following iterations:
+1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
+Definition \ref{Def:chaotic iterations} can be described by the following iterations:
 \begin{equation}
 \left\{
 \begin{array}{l}
 \begin{equation}
 \left\{
 \begin{array}{l}
@@ -200,7 +354,6 @@ With this formulation, a shift function appears as a component of chaotic
 iterations. The shift function is a famous example of a chaotic
 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
 chaotic. 
 iterations. The shift function is a famous example of a chaotic
 map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
 chaotic. 
-
 To study this claim, a new distance between two points $X = (S,E), Y =
 (\check{S},\check{E})\in
 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
 To study this claim, a new distance between two points $X = (S,E), Y =
 (\check{S},\check{E})\in
 \mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
@@ -238,22 +391,24 @@ measure of the differences between strategies $S$ and $\check{S}$. More
 precisely, this floating part is less than $10^{-k}$ if and only if the first
 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
 nonzero, then the $k^{th}$ terms of the two strategies are different.
 precisely, this floating part is less than $10^{-k}$ if and only if the first
 $k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
 nonzero, then the $k^{th}$ terms of the two strategies are different.
+The impact of this choice for a distance will be investigate at the end of the document.
 
 Finally, it has been established in \cite{guyeux10} that,
 
 \begin{proposition}
 
 Finally, it has been established in \cite{guyeux10} that,
 
 \begin{proposition}
-Let $f$ be a map from $\mathds{B}^n$ to itself. Then $G_{f}$ is continuous in
+Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
 the metric space $(\mathcal{X},d)$.
 \end{proposition}
 
 The chaotic property of $G_f$ has been firstly established for the vectorial
 the metric space $(\mathcal{X},d)$.
 \end{proposition}
 
 The chaotic property of $G_f$ has been firstly established for the vectorial
-Boolean negation \cite{guyeux10}. To obtain a characterization, we have secondly
+Boolean negation $f(x_1,\hdots, x_\mathsf{N}) =  (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
 introduced the notion of asynchronous iteration graph recalled bellow.
 
 introduced the notion of asynchronous iteration graph recalled bellow.
 
-Let $f$ be a map from $\mathds{B}^n$ to itself. The
+Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
 {\emph{asynchronous iteration graph}} associated with $f$ is the
 directed graph $\Gamma(f)$ defined by: the set of vertices is
 {\emph{asynchronous iteration graph}} associated with $f$ is the
 directed graph $\Gamma(f)$ defined by: the set of vertices is
-$\mathds{B}^n$; for all $x\in\mathds{B}^n$ and $i\in \llbracket1;n\rrbracket$,
+$\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and 
+$i\in \llbracket1;\mathsf{N}\rrbracket$,
 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
 the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$. 
 The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
@@ -265,22 +420,23 @@ We have finally proven in \cite{bcgr11:ip} that,
 
 \begin{theorem}
 \label{Th:Caractérisation   des   IC   chaotiques}  
 
 \begin{theorem}
 \label{Th:Caractérisation   des   IC   chaotiques}  
-Let $f:\mathds{B}^n\to\mathds{B}^n$. $G_f$ is chaotic  (according to  Devaney) 
+Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (according to  Devaney) 
 if and only if $\Gamma(f)$ is strongly connected.
 \end{theorem}
 
 This result of chaos has lead us to study the possibility to build a
 if and only if $\Gamma(f)$ is strongly connected.
 \end{theorem}
 
 This result of chaos has lead us to study the possibility to build a
-pseudo-random number generator (PRNG) based on the chaotic iterations. 
-As $G_f$, defined on the domain   $\llbracket 1 ;  n \rrbracket^{\mathds{N}} 
-\times \mathds{B}^n$, is build from Boolean networks $f : \mathds{B}^n
-\rightarrow \mathds{B}^n$, we can preserve the theoretical properties on $G_f$
+pseudorandom number generator (PRNG) based on the chaotic iterations. 
+As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
+\times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
+\rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
 during implementations (due to the discrete nature of $f$). It is as if
 during implementations (due to the discrete nature of $f$). It is as if
-$\mathds{B}^n$ represents the memory of the computer whereas $\llbracket 1 ;  n
-\rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance).
+$\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
+\rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
 
 
-\section{Application to Pseudo-Randomness}
+\section{Application to pseudorandomness}
+\label{sec:pseudorandom}
 
 
-\subsection{A First Pseudo-Random Number Generator}
+\subsection{A First pseudorandom Number Generator}
 
 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
 
 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
@@ -325,11 +481,11 @@ return $y$\;
 
 
 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
 
 
 This generator is synthesized in Algorithm~\ref{CI Algorithm}.
-It takes as input: a function $f$;
+It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation   des   IC   chaotiques};
 an integer $b$, ensuring that the number of executed iterations is at least $b$
 and at most $2b+1$; and an initial configuration $x^0$.
 It returns the new generated configuration $x$.  Internally, it embeds two
 an integer $b$, ensuring that the number of executed iterations is at least $b$
 and at most $2b+1$; and an initial configuration $x^0$.
 It returns the new generated configuration $x$.  Internally, it embeds two
-\textit{XORshift}$(k)$ PRNGs \cite{Marsaglia2003} that returns integers
+\textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
 uniformly distributed
 into $\llbracket 1 ; k \rrbracket$.
 \textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
 uniformly distributed
 into $\llbracket 1 ; k \rrbracket$.
 \textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
@@ -350,9 +506,9 @@ We have proven in \cite{bcgr11:ip} that,
   if and only if $M$ is a double stochastic matrix.
 \end{theorem} 
 
   if and only if $M$ is a double stochastic matrix.
 \end{theorem} 
 
+This former generator as successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07}.
 
 
-
-\subsection{Improving the speed of the former generator}
+\subsection{Improving the Speed of the Former Generator}
 
 Instead of updating only one cell at each iteration, we can try to choose a
 subset of components and to update them together. Such an attempt leads
 
 Instead of updating only one cell at each iteration, we can try to choose a
 subset of components and to update them together. Such an attempt leads
@@ -388,6 +544,7 @@ to the following discrete dynamical system in chaotic iterations:
   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
 \end{array}\right.
   x_i^{n-1} &  \text{ if  } i \notin \mathcal{S}^n \\
   \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
 \end{array}\right.
+\label{eq:generalIC}
 \end{equation}
 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
 \end{equation}
 where $f$ is the vectorial negation and $\forall n \in \mathds{N}$, 
 $\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
@@ -404,11 +561,11 @@ the vectorial negation, leads to a speed improvement. However, proofs
 of chaos obtained in~\cite{bg10:ij} have been established
 only for chaotic iterations of the form presented in Definition 
 \ref{Def:chaotic iterations}. The question is now to determine whether the
 of chaos obtained in~\cite{bg10:ij} have been established
 only for chaotic iterations of the form presented in Definition 
 \ref{Def:chaotic iterations}. The question is now to determine whether the
-use of more general chaotic iterations to generate pseudo-random numbers more 
-fastly, does not deflate their topological chaos properties.
-
-\subsection{Proofs of chaos of the general formulation of the chaotic iterations}
+use of more general chaotic iterations to generate pseudorandom numbers 
+faster, does not deflate their topological chaos properties.
 
 
+\subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
+\label{deuxième def}
 Let us consider the discrete dynamical systems in chaotic iterations having 
 the general form:
 
 Let us consider the discrete dynamical systems in chaotic iterations having 
 the general form:
 
@@ -477,7 +634,7 @@ Another time, a shift function appears as a component of these general chaotic
 iterations. 
 
 To study the Devaney's chaos property, a distance between two points 
 iterations. 
 
 To study the Devaney's chaos property, a distance between two points 
-$X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be introduced.
+$X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
 Let us introduce:
 \begin{equation}
 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
 Let us introduce:
 \begin{equation}
 d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
@@ -584,10 +741,71 @@ $G_{f}$ is consequently continuous.
 \end{proof}
 
 
 \end{proof}
 
 
+It is now possible to study the topological behavior of the general chaotic
+iterations. We will prove that,
+
+\begin{theorem}
+\label{t:chaos des general}
+ The general chaotic iterations defined on Equation~\ref{general CIs} satisfy
+the Devaney's property of chaos.
+\end{theorem}
+
+Let us firstly prove the following lemma.
+
+\begin{lemma}[Strong transitivity]
+\label{strongTrans}
+ For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can 
+find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$.
+\end{lemma}
+
+\begin{proof}
+ Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. 
+Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, 
+are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define 
+$\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$.
+We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates
+that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of
+the form $(S',E')$ where $E'=E$ and $S'$ starts with 
+$(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties:
+\begin{itemize}
+ \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$,
+ \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$.
+\end{itemize}
+Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, 
+where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties
+claimed in the lemma.
+\end{proof}
+
+We can now prove the Theorem~\ref{t:chaos des general}...
+
+\begin{proof}[Theorem~\ref{t:chaos des general}]
+Firstly, strong transitivity implies transitivity.
+
+Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To
+prove that $G_f$ is regular, it is sufficient to prove that
+there exists a strategy $\tilde S$ such that the distance between
+$(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that
+$(\tilde S,E)$ is a periodic point.
+
+Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the
+configuration that we obtain from $(S,E)$ after $t_1$ iterations of
+$G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ 
+and $t_2\in\mathds{N}$ such
+that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
+
+Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
+of $S$ and the first $t_2$ terms of $S'$: $$\tilde
+S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
+is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
+$t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
+point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
+have $d((S,E),(\tilde S,E))<\epsilon$.
+\end{proof}
 
 
 
 \section{Efficient PRNG based on Chaotic Iterations}
 
 
 
 \section{Efficient PRNG based on Chaotic Iterations}
+\label{sec:efficient prng}
 
 In  order to  implement efficiently  a PRNG  based on  chaotic iterations  it is
 possible to improve  previous works [ref]. One solution  consists in considering
 
 In  order to  implement efficiently  a PRNG  based on  chaotic iterations  it is
 possible to improve  previous works [ref]. One solution  consists in considering
@@ -614,29 +832,7 @@ x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
  \end{array}
 $$
 
  \end{array}
 $$
 
-%% \begin{figure}[htbp]
-%% \begin{center}
-%% \fbox{
-%% \begin{minipage}{14cm}
-%% unsigned int CIprng() \{\\
-%%   static unsigned int x = 123123123;\\
-%%   unsigned long t1 = xorshift();\\
-%%   unsigned long t2 = xor128();\\
-%%   unsigned long t3 = xorwow();\\
-%%   x = x\textasciicircum (unsigned int)t1;\\
-%%   x = x\textasciicircum (unsigned int)(t2$>>$32);\\
-%%   x = x\textasciicircum (unsigned int)(t3$>>$32);\\
-%%   x = x\textasciicircum (unsigned int)t2;\\
-%%   x = x\textasciicircum (unsigned int)(t1$>>$32);\\
-%%   x = x\textasciicircum (unsigned int)t3;\\
-%%   return x;\\
-%% \}
-%% \end{minipage}
-%% }
-%% \end{center}
-%% \caption{sequential Chaotic Iteration PRNG}
-%% \label{algo:seqCIprng}
-%% \end{figure}
+
 
 
 
 
 
 
@@ -663,19 +859,19 @@ unsigned int CIprng() {
 
 
 In listing~\ref{algo:seqCIprng}  a sequential version of  our chaotic iterations
 
 
 In listing~\ref{algo:seqCIprng}  a sequential version of  our chaotic iterations
-based   PRNG    is   presented.   The    xor   operator   is    represented   by
-\textasciicircum.  This   function  uses  three  classical   64-bits  PRNG:  the
-\texttt{xorshift},  the   \texttt{xor128}  and  the   \texttt{xorwow}.   In  the
-following,  we call  them  xor-like  PRNGSs.  These  three  PRNGs are  presented
-in~\cite{Marsaglia2003}.  As each  xor-like PRNG used works with  64-bits and as
-our PRNG works  with 32-bits, the use of \texttt{(unsigned  int)} selects the 32
-least significant bits whereas  \texttt{(unsigned int)(t3$>>$32)} selects the 32
-most  significants bits  of the  variable \texttt{t}.   So to  produce  a random
-number realizes  6 xor operations with  6 32-bits numbers produced  by 3 64-bits
-PRNG.  This version successes the  BigCrush of the TestU01 battery [P.  L’ecuyer
-  and R. Simard. Testu01].
-
-\section{Efficient prng based on chaotic iterations on GPU}
+based PRNG is  presented.  The xor operator is  represented by \textasciicircum.
+This  function uses  three classical  64-bits PRNG:  the  \texttt{xorshift}, the
+\texttt{xor128}  and  the  \texttt{xorwow}.   In  the following,  we  call  them
+xor-like PRNGSs.   These three PRNGs are  presented in~\cite{Marsaglia2003}.  As
+each xor-like PRNG  used works with 64-bits and as our  PRNG works with 32-bits,
+the use of \texttt{(unsigned int)} selects the 32 least significant bits whereas
+\texttt{(unsigned int)(t3$>>$32)}  selects the 32 most significants  bits of the
+variable \texttt{t}.   So to produce a  random number realizes  6 xor operations
+with 6 32-bits  numbers produced by 3 64-bits PRNG.   This version successes the
+BigCrush of the TestU01 battery~\cite{LEcuyerS07}.
+
+\section{Efficient PRNGs based on chaotic iterations on GPU}
+\label{sec:efficient prng gpu}
 
 In  order to benefit  from computing  power of  GPU, a  program needs  to define
 independent blocks of threads which  can be computed simultaneously. In general,
 
 In  order to benefit  from computing  power of  GPU, a  program needs  to define
 independent blocks of threads which  can be computed simultaneously. In general,
@@ -683,8 +879,8 @@ the larger the number of threads is,  the more local memory is used and the less
 branching  instructions are  used (if,  while, ...),  the better  performance is
 obtained  on  GPU.  So  with  algorithm  \ref{algo:seqCIprng}  presented in  the
 previous section, it is possible to  build a similar program which computes PRNG
 branching  instructions are  used (if,  while, ...),  the better  performance is
 obtained  on  GPU.  So  with  algorithm  \ref{algo:seqCIprng}  presented in  the
 previous section, it is possible to  build a similar program which computes PRNG
-on  GPU. In  the CUDA  [ref] environment,  threads have  a  local identificator,
-called \texttt{ThreadIdx} relative to the block containing them.
+on   GPU.  In  the   CUDA~\cite{Nvid10}  environment,   threads  have   a  local
+identificator, called \texttt{ThreadIdx} relative to the block containing them.
 
 
 \subsection{Naive version for GPU}
 
 
 \subsection{Naive version for GPU}
@@ -694,14 +890,14 @@ The principe consists in assigning the computation of a PRNG as in sequential to
 each thread  of the  GPU.  Of course,  it is  essential that the  three xor-like
 PRNGs  used for  our computation  have different  parameters. So  we  chose them
 randomly with  another PRNG. As the  initialisation is performed by  the CPU, we
 each thread  of the  GPU.  Of course,  it is  essential that the  three xor-like
 PRNGs  used for  our computation  have different  parameters. So  we  chose them
 randomly with  another PRNG. As the  initialisation is performed by  the CPU, we
-have chosen to use the ISAAC PRNG  [ref] to initalize all the parameters for the
-GPU version  of our  PRNG.  The  implementation of the  three xor-like  PRNGs is
-straightforward  as soon  as their  parameters have  been allocated  in  the GPU
-memory. Each xor-like  PRNGs used works with an internal  number $x$ which keeps
-the last generated random numbers. Other internal variables are also used by the
-xor-like PRNGs. More  precisely, the implementation of the  xor128, the xorshift
-and  the xorwow  respectively  require 4,  5  and 6  unsigned  long as  internal
-variables.
+have  chosen  to  use  the  ISAAC  PRNG~\cite{Jenkins96}  to  initalize  all  the
+parameters for  the GPU version  of our PRNG.   The implementation of  the three
+xor-like  PRNGs  is  straightforward  as  soon as  their  parameters  have  been
+allocated in  the GPU memory.  Each xor-like PRNGs  used works with  an internal
+number  $x$  which keeps  the  last  generated  random numbers.  Other  internal
+variables  are   also  used   by  the  xor-like   PRNGs.  More   precisely,  the
+implementation of the  xor128, the xorshift and the  xorwow respectively require
+4, 5 and 6 unsigned long as internal variables.
 
 \begin{algorithm}
 
 
 \begin{algorithm}
 
@@ -736,6 +932,9 @@ and  random  number of  our  PRNG  is  equals to  $100,000\times  ((4+5+6)\times
 All the  tests performed  to pass the  BigCrush of TestU01  succeeded. Different
 number of threads, called \texttt{NumThreads} in our algorithm, have been tested
 upto $10$ millions.
 All the  tests performed  to pass the  BigCrush of TestU01  succeeded. Different
 number of threads, called \texttt{NumThreads} in our algorithm, have been tested
 upto $10$ millions.
+\newline
+\newline
+{\bf QUESTION : on laisse cette remarque, je suis mitigé !!!}
 
 \begin{remark}
 Algorithm~\ref{algo:gpu_kernel}  has  the  advantage to  manipulate  independent
 
 \begin{remark}
 Algorithm~\ref{algo:gpu_kernel}  has  the  advantage to  manipulate  independent
@@ -749,7 +948,7 @@ for all the differents nodes involves in the computation.
 
 As GPU cards using CUDA have shared memory between threads of the same block, it
 is possible  to use this  feature in order  to simplify the  previous algorithm,
 
 As GPU cards using CUDA have shared memory between threads of the same block, it
 is possible  to use this  feature in order  to simplify the  previous algorithm,
-i.e. using less  than 3 xor-like PRNGs. The solution  consists in computing only
+i.e., using less  than 3 xor-like PRNGs. The solution  consists in computing only
 one xor-like PRNG by thread, saving  it into shared memory and using the results
 of some  other threads in the  same block of  threads. In order to  define which
 thread uses the result of which other  one, we can use a permutation array which
 one xor-like PRNG by thread, saving  it into shared memory and using the results
 of some  other threads in the  same block of  threads. In order to  define which
 thread uses the result of which other  one, we can use a permutation array which
@@ -761,7 +960,7 @@ which represent the indexes of the  other threads for which the results are used
 by the  current thread. In  the algorithm, we  consider that a  64-bits xor-like
 PRNG is used, that is why both 32-bits parts are used.
 
 by the  current thread. In  the algorithm, we  consider that a  64-bits xor-like
 PRNG is used, that is why both 32-bits parts are used.
 
-This version also succeed to the BigCrush batteries of tests.
+This version also succeeds to the {\it BigCrush} batteries of tests.
 
 \begin{algorithm}
 
 
 \begin{algorithm}
 
@@ -772,17 +971,15 @@ tab1, tab2: Arrays containing permutations of size permutation\_size\;}
 
 \KwOut{NewNb: array containing random numbers in global memory}
 \If{threadId is concerned} {
 
 \KwOut{NewNb: array containing random numbers in global memory}
 \If{threadId is concerned} {
-  retrieve data from InternalVarXorLikeArray[threadId] in local variables\;
+  retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory and x\;
   offset = threadIdx\%permutation\_size\;
   o1 = threadIdx-offset+tab1[offset]\;
   o2 = threadIdx-offset+tab2[offset]\;
   \For{i=1 to n} {
     t=xor-like()\;
   offset = threadIdx\%permutation\_size\;
   o1 = threadIdx-offset+tab1[offset]\;
   o2 = threadIdx-offset+tab2[offset]\;
   \For{i=1 to n} {
     t=xor-like()\;
-    shared\_mem[threadId]=(unsigned int)t\;
-    x = x $\oplus$ (unsigned int) t\;
-    x = x $\oplus$ (unsigned int) (t>>32)\;
-    x = x $\oplus$ shared[o1]\;
-    x = x $\oplus$ shared[o2]\;
+    t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\;
+    shared\_mem[threadId]=t\;
+    x = x $\oplus$ t\;
 
     store the new PRNG in NewNb[NumThreads*threadId+i]\;
   }
 
     store the new PRNG in NewNb[NumThreads*threadId+i]\;
   }
@@ -794,558 +991,771 @@ version}
 \label{algo:gpu_kernel2}
 \end{algorithm}
 
 \label{algo:gpu_kernel2}
 \end{algorithm}
 
-
+\subsection{Theoretical Evaluation of the Improved Version}
+
+A run of Algorithm~\ref{algo:gpu_kernel2} consists in three operations having 
+the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
+system of Eq.~\ref{eq:generalIC}. That is, three iterations of the general chaotic
+iterations are realized between two stored values of the PRNG.
+To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
+we must guarantee that this dynamical system iterates on the space 
+$\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
+The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
+To prevent from any flaws of chaotic properties, we must check that each right 
+term, corresponding to terms of the strategies,  can possibly be equal to any
+integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
+
+Such a result is obvious for the two first lines, as for the xor-like(), all the
+integers belonging into its interval of definition can occur at each iteration.
+It can be easily stated for the two last lines by an immediate mathematical
+induction.
+
+Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
+chaotic iterations presented previously, and for this reason, it satisfies the 
+Devaney's formulation of a chaotic behavior.
 
 \section{Experiments}
 
 \section{Experiments}
-
-Differents experiments have been performed in order to measure the generation
-speed.
-\begin{figure}[t]
+\label{sec:experiments}
+
+Different experiments  have been  performed in order  to measure  the generation
+speed. We have used  a computer equiped with Tesla C1060 NVidia  GPU card and an
+Intel  Xeon E5530 cadenced  at 2.40  GHz for  our experiments  and we  have used
+another one  equipped with  a less performant  CPU and  a GeForce GTX  280. Both
+cards have 240 cores.
+
+In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  number of  random numbers
+generated per second with the xor-like based PRNG. In this figure, the optimized
+version use the {\it xor64} described in~\cite{Marsaglia2003}. The naive version
+use  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIprng}.   In
+order to obtain the optimal performance we removed the storage of random numbers
+in the GPU memory. This step is time consuming and slows down the random numbers
+generation.  Moreover, if one is  interested by applications that consume random
+numbers  directly   when  they  are  generated,  their   storage  are  completely
+useless. In this  figure we can see  that when the number of  threads is greater
+than approximately 30,000 upto 5 millions the number of random numbers generated
+per second  is almost constant.  With the  naive version, it is  between 2.5 and
+3GSample/s.   With  the  optimized   version,  it  is  approximately  equals  to
+20GSample/s. Finally  we can remark  that both GPU  cards are quite  similar. In
+practice,  the Tesla C1060  has more  memory than  the GTX  280 and  this memory
+should be of better quality.
+
+\begin{figure}[htbp]
 \begin{center}
 \begin{center}
-  \includegraphics[scale=.7]{curve_time_gpu.pdf}
+  \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
 \end{center}
 \end{center}
-\caption{Number of random numbers generated per second}
-\label{fig:time_naive_gpu}
+\caption{Number of random numbers generated per second with the xorlike based PRNG}
+\label{fig:time_xorlike_gpu}
 \end{figure}
 
 
 \end{figure}
 
 
-First of all we have compared the time to generate X random numbers with both
-the CPU version and the GPU version. 
-
-Faire une courbe du nombre de random en fonction du nombre de threads,
-éventuellement en fonction du nombres de threads par bloc.
-
-
-
-\section{The relativity of disorder}
-\label{sec:de la relativité du désordre}
+In  comparison,   Listing~\ref{algo:seqCIprng}  allows  us   to  generate  about
+138MSample/s with only one core of the Xeon E5530.
 
 
-\subsection{Impact of the topology's finenesse}
 
 
-Let us firstly introduce the following notations.
-
-\begin{notation}
-$\mathcal{X}_\tau$ will denote the topological space
-$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
-of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
-$\mathcal{V} (x)$, if there is no ambiguity).
-\end{notation}
+In Figure~\ref{fig:time_bbs_gpu}  we highlight the performance  of the optimized
+BBS based  PRNG on GPU. Performances are  less important. On the  Tesla C1060 we
+obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s.
 
 
+\begin{figure}[htbp]
+\begin{center}
+  \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
+\end{center}
+\caption{Number of random numbers generated per second with the BBS based PRNG}
+\label{fig:time_bbs_gpu}
+\end{figure}
 
 
+Both  these  experimentations allows  us  to conclude  that  it  is possible  to
+generate a  huge number of pseudorandom  numbers with the  xor-like version and
+about tens  times less with the BBS  based version. The former  version has only
+chaotic properties whereas the latter also has cryptographically properties.
 
 
-\begin{theorem}
-\label{Th:chaos et finesse}
-Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
-$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
-both for $\tau$ and $\tau'$.
 
 
-If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
-$(\mathcal{X}_\tau,f)$ is chaotic too.
-\end{theorem}
+%% \section{Cryptanalysis of the Proposed PRNG}
 
 
-\begin{proof}
-Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
 
 
-Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
-\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
-can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
-\varnothing$. Consequently, $f$ is $\tau-$transitive.
+%% Mettre ici la preuve de PCH
 
 
-Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
-all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
-periodic point for $f$ into $V$.
+%\section{The relativity of disorder}
+%\label{sec:de la relativité du désordre}
 
 
-Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
-of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
+%In the next two sections, we investigate the impact of the choices that have
+%lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
 
 
-But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
-\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
-periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
-proven. 
-\end{proof}
+%\subsection{Impact of the topology's finenesse}
 
 
-\subsection{A given system can always be claimed as chaotic}
+%Let us firstly introduce the following notations.
 
 
-Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
-Then this function is chaotic (in a certain way):
+%\begin{notation}
+%$\mathcal{X}_\tau$ will denote the topological space
+%$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
+%of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
+%$\mathcal{V} (x)$, if there is no ambiguity).
+%\end{notation}
 
 
-\begin{theorem}
-Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
-at least a fixed point.
-Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
-topology on $\X$.
-\end{theorem}
 
 
 
 
-\begin{proof}
-$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
-\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
-\varnothing$.
-As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
-an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
-instance, $n=0$ is appropriate.
+%\begin{theorem}
+%\label{Th:chaos et finesse}
+%Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
+%$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
+%both for $\tau$ and $\tau'$.
 
 
-Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
-\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
-regular, and the result is established.
-\end{proof}
+%If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
+%$(\mathcal{X}_\tau,f)$ is chaotic too.
+%\end{theorem}
 
 
+%\begin{proof}
+%Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
 
 
+%Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
+%\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
+%can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
+%\varnothing$. Consequently, $f$ is $\tau-$transitive.
 
 
+%Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
+%all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
+%periodic point for $f$ into $V$.
 
 
-\subsection{A given system can always be claimed as non-chaotic}
+%Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
+%of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
 
 
-\begin{theorem}
-Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
-If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
-(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
-\end{theorem}
+%But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
+%\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
+%periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
+%proven. 
+%\end{proof}
 
 
-\begin{proof}
-Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
-f\right)$ is both transitive and regular.
+%\subsection{A given system can always be claimed as chaotic}
 
 
-Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
-contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
-f\right)$ is regular. Then $x$ must be a periodic point of $f$.
+%Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
+%Then this function is chaotic (in a certain way):
 
 
-Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
-because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
-\mathcal{X}, y \notin I_x$.
+%\begin{theorem}
+%Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
+%at least a fixed point.
+%Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
+%topology on $\X$.
+%\end{theorem}
 
 
-As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
-sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
-\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
-\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
-\end{proof}
 
 
+%\begin{proof}
+%$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
+%\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
+%\varnothing$.
+%As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
+%an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
+%instance, $n=0$ is appropriate.
 
 
+%Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
+%\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
+%regular, and the result is established.
+%\end{proof}
 
 
 
 
 
 
 
 
-\section{Chaos on the order topology}
+%\subsection{A given system can always be claimed as non-chaotic}
 
 
-\subsection{The phase space is an interval of the real line}
+%\begin{theorem}
+%Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
+%If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
+%(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
+%\end{theorem}
 
 
-\subsubsection{Toward a topological semiconjugacy}
+%\begin{proof}
+%Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
+%f\right)$ is both transitive and regular.
 
 
-In what follows, our intention is to establish, by using a topological
-semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
-iterations on a real interval. To do so, we must firstly introduce some
-notations and terminologies. 
+%Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
+%contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
+%f\right)$ is regular. Then $x$ must be a periodic point of $f$.
 
 
-Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
-1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
-\times \B^\mathsf{N}$.
+%Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
+%because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
+%\mathcal{X}, y \notin I_x$.
+
+%As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
+%sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
+%\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
+%\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
+%\end{proof}
+
+
+
+
+
+
+%\section{Chaos on the order topology}
+%\label{sec: chaos order topology}
+%\subsection{The phase space is an interval of the real line}
+
+%\subsubsection{Toward a topological semiconjugacy}
+
+%In what follows, our intention is to establish, by using a topological
+%semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
+%iterations on a real interval. To do so, we must firstly introduce some
+%notations and terminologies. 
+
+%Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
+%1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
+%\times \B^\mathsf{N}$.
+
+
+%\begin{definition}
+%The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
+%0, 2^{10} \big[$ is defined by:
+%\begin{equation}
+% \begin{array}{cccl}
+%\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
+%\longrightarrow & \big[ 0, 2^{10} \big[ \\
+% & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
+%\varphi \left((S,E)\right)
+%\end{array}
+%\end{equation}
+%where $\varphi\left((S,E)\right)$ is the real number:
+%\begin{itemize}
+%\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
+%is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
+%\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
+%\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
+%\end{itemize}
+%\end{definition}
+
+
+
+%$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
+%real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
+%iterations $\Go$ on this real interval. To do so, two intermediate functions
+%over $\big[ 0, 2^{10} \big[$ must be introduced:
+
+
+%\begin{definition}
+%\label{def:e et s}
+%Let $x \in \big[ 0, 2^{10} \big[$ and:
+%\begin{itemize}
+%\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
+%$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
+%\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
+%decomposition of $x$ is the one that does not have an infinite number of 9: 
+%$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
+%\end{itemize}
+%$e$ and $s$ are thus defined as follows:
+%\begin{equation}
+%\begin{array}{cccl}
+%e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
+% & x & \longmapsto & (e_0, \hdots, e_9)
+%\end{array}
+%\end{equation}
+%and
+%\begin{equation}
+% \begin{array}{cccc}
+%s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
+%\rrbracket^{\mathds{N}} \\
+% & x & \longmapsto & (s^k)_{k \in \mathds{N}}
+%\end{array}
+%\end{equation}
+%\end{definition}
+
+%We are now able to define the function $g$, whose goal is to translate the
+%chaotic iterations $\Go$ on an interval of $\mathds{R}$.
+
+%\begin{definition}
+%$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
+%\begin{equation}
+%\begin{array}{cccc}
+%g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
+% & x & \longmapsto & g(x)
+%\end{array}
+%\end{equation}
+%where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
+%\begin{itemize}
+%\item its integral part has a binary decomposition equal to $e_0', \hdots,
+%e_9'$, with:
+% \begin{equation}
+%e_i' = \left\{
+%\begin{array}{ll}
+%e(x)_i & \textrm{ if } i \neq s^0\\
+%e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
+%\end{array}
+%\right.
+%\end{equation}
+%\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
+%\end{itemize}
+%\end{definition}
+
+%\bigskip
+
+
+%In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
+%\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
+%\begin{equation}
+%g(x) =
+%\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
+%\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
+%\end{equation}
+
+
+%\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
+
+%Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
+%usual one being the Euclidian distance recalled bellow:
+
+%\begin{notation}
+%\index{distance!euclidienne}
+%$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
+%$\Delta(x,y) = |y-x|^2$.
+%\end{notation}
+
+%\medskip
+
+%This Euclidian distance does not reproduce exactly the notion of proximity
+%induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
+%This is the reason why we have to introduce the following metric:
+
+
+
+%\begin{definition}
+%Let $x,y \in \big[ 0, 2^{10} \big[$.
+%$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
+%defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
+%where:
+%\begin{center}
+%$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
+%\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
+%\dfrac{|S^k-\check{S}^k|}{10^k}}$.
+%\end{center}
+%\end{definition}
+
+%\begin{proposition}
+%$D$ is a distance on $\big[ 0, 2^{10} \big[$.
+%\end{proposition}
+
+%\begin{proof}
+%The three axioms defining a distance must be checked.
+%\begin{itemize}
+%\item $D \geqslant 0$, because everything is positive in its definition. If
+%$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
+%(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
+%$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
+%the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
+%\item $D(x,y)=D(y,x)$.
+%\item Finally, the triangular inequality is obtained due to the fact that both
+%$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
+%\end{itemize}
+%\end{proof}
+
+
+%The convergence of sequences according to $D$ is not the same than the usual
+%convergence related to the Euclidian metric. For instance, if $x^n \to x$
+%according to $D$, then necessarily the integral part of each $x^n$ is equal to
+%the integral part of $x$ (at least after a given threshold), and the decimal
+%part of $x^n$ corresponds to the one of $x$ ``as far as required''.
+%To illustrate this fact, a comparison between $D$ and the Euclidian distance is
+%given Figure \ref{fig:comparaison de distances}. These illustrations show that
+%$D$ is richer and more refined than the Euclidian distance, and thus is more
+%precise.
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[Function $x \to dist(x;1,234) $ on the interval
+%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
+%  \subfigure[Function $x \to dist(x;3) $ on the interval
+%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
+%\end{center}
+%\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
+%\label{fig:comparaison de distances}
+%\end{figure}
+
+
+
+
+%\subsubsection{The semiconjugacy}
+
+%It is now possible to define a topological semiconjugacy between $\mathcal{X}$
+%and an interval of $\mathds{R}$:
+
+%\begin{theorem}
+%Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
+%$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
+%\begin{equation*}
+%\begin{CD}
+%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
+%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
+%    @V{\varphi}VV                    @VV{\varphi}V\\
+%\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
+%D~\right)
+%\end{CD}
+%\end{equation*}
+%\end{theorem}
+
+%\begin{proof}
+%$\varphi$ has been constructed in order to be continuous and onto.
+%\end{proof}
+
+%In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
+%\big[$.
+
+
+
+
+
+
+%\subsection{Study of the chaotic iterations described as a real function}
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
+%  \subfigure[ICs on the interval
+%$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
+%\end{center}
+%\caption{Representation of the chaotic iterations.}
+%\label{fig:ICs}
+%\end{figure}
+
+
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
+%\end{center}
+%\caption{ICs on small intervals.}
+%\label{fig:ICs2}
+%\end{figure}
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
+%  \subfigure[ICs on the interval 
+%$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
+%\end{center}
+%\caption{General aspect of the chaotic iterations.}
+%\label{fig:ICs3}
+%\end{figure}
+
+
+%We have written a Python program to represent the chaotic iterations with the
+%vectorial negation on the real line $\mathds{R}$. Various representations of
+%these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
+%It can be remarked that the function $g$ is a piecewise linear function: it is
+%linear on each interval having the form $\left[ \dfrac{n}{10},
+%\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
+%slope is equal to 10. Let us justify these claims:
+
+%\begin{proposition}
+%\label{Prop:derivabilite des ICs}
+%Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
+%$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
+%\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
+
+%Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
+%\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
+%$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
+%g'(x)=10$.
+%\end{proposition}
 
 
 
 
-\begin{definition}
-The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
-0, 2^{10} \big[$ is defined by:
-\begin{equation}
- \begin{array}{cccl}
-\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
-\longrightarrow & \big[ 0, 2^{10} \big[ \\
- & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
-\varphi \left((S,E)\right)
-\end{array}
-\end{equation}
-where $\varphi\left((S,E)\right)$ is the real number:
-\begin{itemize}
-\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
-is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
-\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
-\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
-\end{itemize}
-\end{definition}
+%\begin{proof}
+%Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
+%0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
+%prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
+%and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
+%the images $g(x)$ of these points $x$:
+%\begin{itemize}
+%\item Have the same integral part, which is $e$, except probably the bit number
+%$s^0$. In other words, this integer has approximately the same binary
+%decomposition than $e$, the sole exception being the digit $s^0$ (this number is
+%then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
+%\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
+%\item A shift to the left has been applied to the decimal part $y$, losing by
+%doing so the common first digit $s^0$. In other words, $y$ has been mapped into
+%$10\times y - s^0$.
+%\end{itemize}
+%To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
+%multiplication by 10, and second, add the same constant to each term, which is
+%$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
+%\end{proof}
+
+%\begin{remark}
+%Finally, chaotic iterations are elements of the large family of functions that
+%are both chaotic and piecewise linear (like the tent map).
+%\end{remark}
+
+
+
+%\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
+
+%The two propositions bellow allow to compare our two distances on $\big[ 0,
+%2^\mathsf{N} \big[$:
+
+%\begin{proposition}
+%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
+%2^\mathsf{N} \big[, D~\right)$ is not continuous. 
+%\end{proposition}
+
+%\begin{proof}
+%The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
+%such that:
+%\begin{itemize}
+%\item $\Delta (x^n,2) \to 0.$
+%\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
+%\end{itemize}
+
+%The sequential characterization of the continuity concludes the demonstration.
+%\end{proof}
+
+
+
+%A contrario:
+
+%\begin{proposition}
+%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
+%2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
+%\end{proposition}
+
+%\begin{proof}
+%If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
+%threshold, because $D_e$ only returns integers. So, after this threshold, the
+%integral parts of all the $x^n$ are equal to the integral part of $x$. 
+
+%Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
+%\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
+%means that for all $k$, an index $N_k$ can be found such that, $\forall n
+%\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
+%digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
+%result.
+%\end{proof}
+
+%The conclusion of these propositions is that the proposed metric is more precise
+%than the Euclidian distance, that is:
+
+%\begin{corollary}
+%$D$ is finer than the Euclidian distance $\Delta$.
+%\end{corollary}
+
+%This corollary can be reformulated as follows:
+
+%\begin{itemize}
+%\item The topology produced by $\Delta$ is a subset of the topology produced by
+%$D$.
+%\item $D$ has more open sets than $\Delta$.
+%\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
+%to converge with the one inherited by $\Delta$, which is denoted here by
+%$\tau_\Delta$.
+%\end{itemize}
 
 
 
 
+%\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
+%\label{chpt:Chaos des itérations chaotiques sur R}
 
 
-$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
-real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
-iterations $\Go$ on this real interval. To do so, two intermediate functions
-over $\big[ 0, 2^{10} \big[$ must be introduced:
 
 
 
 
-\begin{definition}
-\label{def:e et s}
-Let $x \in \big[ 0, 2^{10} \big[$ and:
-\begin{itemize}
-\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
-$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
-\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
-decomposition of $x$ is the one that does not have an infinite number of 9: 
-$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
-\end{itemize}
-$e$ and $s$ are thus defined as follows:
-\begin{equation}
-\begin{array}{cccl}
-e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
- & x & \longmapsto & (e_0, \hdots, e_9)
-\end{array}
-\end{equation}
-and
-\begin{equation}
- \begin{array}{cccc}
-s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
-\rrbracket^{\mathds{N}} \\
- & x & \longmapsto & (s^k)_{k \in \mathds{N}}
-\end{array}
-\end{equation}
-\end{definition}
+%\subsubsection{Chaos according to Devaney}
 
 
-We are now able to define the function $g$, whose goal is to translate the
-chaotic iterations $\Go$ on an interval of $\mathds{R}$.
+%We have recalled previously that the chaotic iterations $\left(\Go,
+%\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
+%can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
+%topology, because:
+%\begin{itemize}
+%\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
+%\big[_D\right)$ are semiconjugate by $\varphi$,
+%\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
+%according to Devaney, because the semiconjugacy preserve this character.
+%\item But the topology generated by $D$ is finer than the topology generated by
+%the Euclidian distance $\Delta$ -- which is the order topology.
+%\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
+%chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
+%topology on $\mathds{R}$.
+%\end{itemize}
 
 
-\begin{definition}
-$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
-\begin{equation}
-\begin{array}{cccc}
-g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
- & x & \longmapsto & g(x)
-\end{array}
-\end{equation}
-where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
-\begin{itemize}
-\item its integral part has a binary decomposition equal to $e_0', \hdots,
-e_9'$, with:
- \begin{equation}
-e_i' = \left\{
-\begin{array}{ll}
-e(x)_i & \textrm{ if } i \neq s^0\\
-e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
-\end{array}
-\right.
-\end{equation}
-\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
-\end{itemize}
-\end{definition}
+%This result can be formulated as follows.
 
 
-\bigskip
+%\begin{theorem}
+%\label{th:IC et topologie de l'ordre}
+%The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
+%Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
+%order topology.
+%\end{theorem}
 
 
+%Indeed this result is weaker than the theorem establishing the chaos for the
+%finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
+%still remains important. Indeed, we have studied in our previous works a set
+%different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
+%in order to be as close as possible from the computer: the properties of
+%disorder proved theoretically will then be preserved when computing. However, we
+%could wonder whether this change does not lead to a disorder of a lower quality.
+%In other words, have we replaced a situation of a good disorder lost when
+%computing, to another situation of a disorder preserved but of bad quality.
+%Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
+% 
 
 
-In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
-\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
-\begin{equation}
-g(x) =
-\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
-\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
-\end{equation}
 
 
 
 
-\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
 
 
-Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
-usual one being the Euclidian distance recalled bellow:
 
 
-\begin{notation}
-\index{distance!euclidienne}
-$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
-$\Delta(x,y) = |y-x|^2$.
-\end{notation}
 
 
-\medskip
+\section{Security Analysis}
+\label{sec:security analysis}
 
 
-This Euclidian distance does not reproduce exactly the notion of proximity
-induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
-This is the reason why we have to introduce the following metric:
 
 
 
 
+In this section the concatenation of two strings $u$ and $v$ is classically
+denoted by $uv$.
+In a cryptographic context, a pseudorandom generator is a deterministic
+algorithm $G$ transforming strings  into strings and such that, for any
+seed $w$ of length $N$, $G(w)$ (the output of $G$ on the input $w$) has size
+$\ell_G(N)$ with $\ell_G(N)>N$.
+The notion of {\it secure} PRNGs can now be defined as follows. 
 
 \begin{definition}
 
 \begin{definition}
-Let $x,y \in \big[ 0, 2^{10} \big[$.
-$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
-defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
-where:
-\begin{center}
-$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
-\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
-\dfrac{|S^k-\check{S}^k|}{10^k}}$.
-\end{center}
+A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
+algorithm $D$, for any positive polynomial $p$, and for all sufficiently
+large $k$'s,
+$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)}=1]|< \frac{1}{p(N)},$$
+where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
+probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
+internal coin tosses of $D$. 
 \end{definition}
 
 \end{definition}
 
-\begin{proposition}
-$D$ is a distance on $\big[ 0, 2^{10} \big[$.
-\end{proposition}
-
-\begin{proof}
-The three axioms defining a distance must be checked.
-\begin{itemize}
-\item $D \geqslant 0$, because everything is positive in its definition. If
-$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
-(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
-$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
-the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
-\item $D(x,y)=D(y,x)$.
-\item Finally, the triangular inequality is obtained due to the fact that both
-$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
-\end{itemize}
-\end{proof}
-
-
-The convergence of sequences according to $D$ is not the same than the usual
-convergence related to the Euclidian metric. For instance, if $x^n \to x$
-according to $D$, then necessarily the integral part of each $x^n$ is equal to
-the integral part of $x$ (at least after a given threshold), and the decimal
-part of $x^n$ corresponds to the one of $x$ ``as far as required''.
-To illustrate this fact, a comparison between $D$ and the Euclidian distance is
-given Figure \ref{fig:comparaison de distances}. These illustrations show that
-$D$ is richer and more refined than the Euclidian distance, and thus is more
-precise.
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[Function $x \to dist(x;1,234) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
-  \subfigure[Function $x \to dist(x;3) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
-\end{center}
-\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
-\label{fig:comparaison de distances}
-\end{figure}
-
-
-
-
-\subsubsection{The semiconjugacy}
-
-It is now possible to define a topological semiconjugacy between $\mathcal{X}$
-and an interval of $\mathds{R}$:
-
-\begin{theorem}
-Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
-$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
-\begin{equation*}
-\begin{CD}
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
-    @V{\varphi}VV                    @VV{\varphi}V\\
-\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
-D~\right)
-\end{CD}
-\end{equation*}
-\end{theorem}
-
-\begin{proof}
-$\varphi$ has been constructed in order to be continuous and onto.
-\end{proof}
-
-In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
-\big[$.
-
-
-
-
-
-
-\subsection{Study of the chaotic iterations described as a real function}
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
-  \subfigure[ICs on the interval
-$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
-  \subfigure[ICs on the interval
-$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
-  \subfigure[ICs on the interval
-$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
-\end{center}
-\caption{Representation of the chaotic iterations.}
-\label{fig:ICs}
-\end{figure}
-
-
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
-  \subfigure[ICs on the interval
-$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
-\end{center}
-\caption{ICs on small intervals.}
-\label{fig:ICs2}
-\end{figure}
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
-  \subfigure[ICs on the interval 
-$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
-\end{center}
-\caption{General aspect of the chaotic iterations.}
-\label{fig:ICs3}
-\end{figure}
-
-
-We have written a Python program to represent the chaotic iterations with the
-vectorial negation on the real line $\mathds{R}$. Various representations of
-these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
-It can be remarked that the function $g$ is a piecewise linear function: it is
-linear on each interval having the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
-slope is equal to 10. Let us justify these claims:
+Intuitively, it means that there is no polynomial time algorithm that can
+distinguish a perfect uniform random generator from $G$ with a non
+negligible probability. The interested reader is referred
+to~\cite[chapter~3]{Goldreich} for more information. Note that it is
+quite easily possible to change the function $\ell$ into any polynomial
+function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
+
+The generation schema developed in (\ref{equation Oplus}) is based on a
+pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
+without loss of generality, that for any string $S_0$ of size $N$, the size
+of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
+Let $S_1,\ldots,S_k$ be the 
+strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
+the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
+is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
+$(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
+(x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$. 
+We claim now that if this PRNG is secure,
+then the new one is secure too.
 
 \begin{proposition}
 
 \begin{proposition}
-\label{Prop:derivabilite des ICs}
-Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
-$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
-\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
-
-Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
-$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
-g'(x)=10$.
+If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
+PRNG too.
 \end{proposition}
 
 \end{proposition}
 
-
 \begin{proof}
 \begin{proof}
-Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
-0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
-prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
-and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
-the images $g(x)$ of these points $x$:
-\begin{itemize}
-\item Have the same integral part, which is $e$, except probably the bit number
-$s^0$. In other words, this integer has approximately the same binary
-decomposition than $e$, the sole exception being the digit $s^0$ (this number is
-then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
-\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
-\item A shift to the left has been applied to the decimal part $y$, losing by
-doing so the common first digit $s^0$. In other words, $y$ has been mapped into
-$10\times y - s^0$.
-\end{itemize}
-To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
-multiplication by 10, and second, add the same constant to each term, which is
-$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
-\end{proof}
-
-\begin{remark}
-Finally, chaotic iterations are elements of the large family of functions that
-are both chaotic and piecewise linear (like the tent map).
-\end{remark}
-
-
-
-\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
-
-The two propositions bellow allow to compare our two distances on $\big[ 0,
-2^\mathsf{N} \big[$:
-
-\begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, D~\right)$ is not continuous. 
-\end{proposition}
-
-\begin{proof}
-The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
-such that:
-\begin{itemize}
-\item $\Delta (x^n,2) \to 0.$
-\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
-\end{itemize}
-
-The sequential characterization of the continuity concludes the demonstration.
-\end{proof}
-
-
-
-A contrario:
+The proposition is proved by contraposition. Assume that $X$ is not
+secure. By Definition, there exists a polynomial time probabilistic
+algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
+$N\geq \frac{k_0}{2}$ satisfying 
+$$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
+We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
+$kN$:
+\begin{enumerate}
+\item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
+\item Pick a string $y$ of size $N$ uniformly at random.
+\item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
+  \bigoplus_{i=1}^{i=k} w_i).$
+\item Return $D(z)$.
+\end{enumerate}
+
+
+Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
+from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
+(each $w_i$ has length $N$) to 
+$(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
+  \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
+\begin{equation}\label{PCH-1}
+D^\prime(w)=D(\varphi_y(w)),
+\end{equation}
+where $y$ is randomly generated. 
+Moreover, for each $y$, $\varphi_{y}$ is injective: if 
+$(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
+w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
+(y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
+$y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
+by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
+is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
+one has
+\begin{equation}\label{PCH-2}
+\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
+\end{equation}
 
 
-\begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
-\end{proposition}
+Now, using (\ref{PCH-1}) again, one has  for every $x$,
+\begin{equation}\label{PCH-3}
+D^\prime(H(x))=D(\varphi_y(H(x))),
+\end{equation}
+where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
+thus
+\begin{equation}\label{PCH-3}
+D^\prime(H(x))=D(yx),
+\end{equation}
+where $y$ is randomly generated. 
+It follows that 
 
 
-\begin{proof}
-If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
-threshold, because $D_e$ only returns integers. So, after this threshold, the
-integral parts of all the $x^n$ are equal to the integral part of $x$. 
-
-Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
-\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
-means that for all $k$, an index $N_k$ can be found such that, $\forall n
-\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
-digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
-result.
+\begin{equation}\label{PCH-4}
+\mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
+\end{equation}
+ From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
+there exist a polynomial time probabilistic
+algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
+$N\geq \frac{k_0}{2}$ satisfying 
+$$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
+proving that $H$ is not secure, a contradiction. 
 \end{proof}
 
 \end{proof}
 
-The conclusion of these propositions is that the proposed metric is more precise
-than the Euclidian distance, that is:
-
-\begin{corollary}
-$D$ is finer than the Euclidian distance $\Delta$.
-\end{corollary}
-
-This corollary can be reformulated as follows:
 
 
-\begin{itemize}
-\item The topology produced by $\Delta$ is a subset of the topology produced by
-$D$.
-\item $D$ has more open sets than $\Delta$.
-\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
-to converge with the one inherited by $\Delta$, which is denoted here by
-$\tau_\Delta$.
-\end{itemize}
 
 
 
 
-\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
-\label{chpt:Chaos des itérations chaotiques sur R}
+\section{A cryptographically secure prng for GPU}
+\label{sec:CSGPU}
+It is  possible to build a  cryptographically secure prng based  on the previous
+algorithm (algorithm~\ref{algo:gpu_kernel2}).   It simply consists  in replacing
+the  {\it  xor-like} algorithm  by  another  cryptographically  secure prng.  In
+practice, we suggest  to use the BBS algorithm~\cite{BBS}  which takes the form:
+$$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. Those
+prime numbers  need to be congruent  to 3 modulus  4. In practice, this  PRNG is
+known to  be slow and  not efficient for  the generation of random  numbers. For
+current  GPU   cards,  the  modulus   operation  is  the  most   time  consuming
+operation. So in  order to obtain quite reasonable  performances, it is required
+to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
+less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
+pratice we can  choose prime numbers around 256 that are  congruent to 3 modulus
+4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
+chosen  (the   maximum  number  of   undistinguishing  is  less  or   equals  to
+$log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
+the BBS algorithm, with different combinations of $M$ is required.
 
 
+Currently this PRNG does not succeed to pass all the tests of TestU01.
 
 
 
 
-\subsubsection{Chaos according to Devaney}
-
-We have recalled previously that the chaotic iterations $\left(\Go,
-\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
-can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
-topology, because:
-\begin{itemize}
-\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
-\big[_D\right)$ are semiconjugate by $\varphi$,
-\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
-according to Devaney, because the semiconjugacy preserve this character.
-\item But the topology generated by $D$ is finer than the topology generated by
-the Euclidian distance $\Delta$ -- which is the order topology.
-\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
-chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
-topology on $\mathds{R}$.
-\end{itemize}
-
-This result can be formulated as follows.
-
-\begin{theorem}
-\label{th:IC et topologie de l'ordre}
-The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
-Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
-order topology.
-\end{theorem}
-
-Indeed this result is weaker than the theorem establishing the chaos for the
-finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
-still remains important. Indeed, we have studied in our previous works a set
-different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
-in order to be as close as possible from the computer: the properties of
-disorder proved theoretically will then be preserved when computing. However, we
-could wonder whether this change does not lead to a disorder of a lower quality.
-In other words, have we replaced a situation of a good disorder lost when
-computing, to another situation of a disorder preserved but of bad quality.
-Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
+\section{Conclusion}
 
 
 
 
+In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
+iterations. We have proven that these PRNGs are chaotic in the sense of Devenay.
+We also propose a PRNG cryptographically secure and its implementation on GPU.
 
 
+An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
+generate   a  huge   number   of  pseudorandom   numbers   per  second   (about
+20Gsample/s). This PRNG succeeds to pass the hardest batteries of TestU01.
 
 
+In future  work we plan to  extend this work  for parallel PRNG for  clusters or
+grid computing. We also plan to improve  the BBS version in order to succeed all
+the tests of TestU01.
 
 
 
 
 
 
-\section{Conclusion}
-\bibliographystyle{plain}
+\bibliographystyle{plain} 
 \bibliography{mabase}
 \end{document}
 \bibliography{mabase}
 \end{document}