]> AND Private Git Repository - prng_gpu.git/blobdiff - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Presque fin d'une relecture
[prng_gpu.git] / prng_gpu.tex
index 84efafa5443f23f4504a723320ec63e7c2f36b49..0279f03d0b80f7273e73e16fb9032223bdb32484 100644 (file)
@@ -141,8 +141,8 @@ The remainder of this paper  is organized as follows. In Section~\ref{section:re
   and on an iteration process called ``chaotic
 iterations'' on which the post-treatment is based. 
 Proofs of chaos are given in  Section~\ref{sec:pseudorandom}.
   and on an iteration process called ``chaotic
 iterations'' on which the post-treatment is based. 
 Proofs of chaos are given in  Section~\ref{sec:pseudorandom}.
-Section~\ref{sec:efficient    prng}   presents   an   efficient
-implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient prng
+Section~\ref{sec:efficient    PRNG}   presents   an   efficient
+implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient PRNG
   gpu}   describes   the  GPU   implementation. 
 Such generators are experimented in 
 Section~\ref{sec:experiments}.
   gpu}   describes   the  GPU   implementation. 
 Such generators are experimented in 
 Section~\ref{sec:experiments}.
@@ -433,10 +433,10 @@ during implementations (due to the discrete nature of $f$). It is as if
 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
 
 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
 
-\section{Application to pseudorandomness}
+\section{Application to Pseudorandomness}
 \label{sec:pseudorandom}
 
 \label{sec:pseudorandom}
 
-\subsection{A First pseudorandom Number Generator}
+\subsection{A First Pseudorandom Number Generator}
 
 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
 
 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
@@ -805,19 +805,28 @@ have $d((S,E),(\tilde S,E))<\epsilon$.
 
 
 \section{Efficient PRNG based on Chaotic Iterations}
 
 
 \section{Efficient PRNG based on Chaotic Iterations}
-\label{sec:efficient prng}
+\label{sec:efficient PRNG}
 
 
-In  order to  implement efficiently  a PRNG  based on  chaotic iterations  it is
-possible to improve  previous works [ref]. One solution  consists in considering
-that the  strategy used contains all the  bits for which the  negation is
-achieved out. Then in order to apply  the negation on these bits we can simply
-apply the  xor operator between  the current number  and the strategy. In
-order to obtain the strategy we also use a classical PRNG.
+Based on the proof presented in the previous section, it is now possible to 
+improve the speed of the generator formerly presented in~\cite{bgw09:ip,guyeux10}. 
+The first idea is to consider
+that the provided strategy is a pseudorandom Boolean vector obtained by a
+given PRNG.
+An iteration of the system is simply the bitwise exclusive or between
+the last computed state and the current strategy.
+Topological properties of disorder exhibited by chaotic 
+iterations can be inherited by the inputted generator, hoping by doing so to 
+obtain some statistical improvements while preserving speed.
 
 
-Here  is an  example with  16-bits numbers  showing how  the bitwise  operations
+
+Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
 are
 are
-applied.  Suppose  that $x$ and the  strategy $S^i$ are defined  in binary mode.
-Then the following table shows the result of $x$ xor $S^i$.
+done.  
+Suppose  that $x$ and the  strategy $S^i$ are given as
+binary vectors.
+Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
+
+\begin{table}
 $$
 \begin{array}{|cc|cccccccccccccccc|}
 \hline
 $$
 \begin{array}{|cc|cccccccccccccccc|}
 \hline
@@ -831,15 +840,15 @@ x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
 \hline
  \end{array}
 $$
 \hline
  \end{array}
 $$
+\caption{Example of an arbitrary round of the proposed generator}
+\label{TableExemple}
+\end{table}
 
 
 
 
 
 
-
-
-\lstset{language=C,caption={C code of the sequential chaotic iterations based
-PRNG},label=algo:seqCIprng}
+\lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label=algo:seqCIPRNG}
 \begin{lstlisting}
 \begin{lstlisting}
-unsigned int CIprng() {
+unsigned int CIPRNG() {
   static unsigned int x = 123123123;
   unsigned long t1 = xorshift();
   unsigned long t2 = xor128();
   static unsigned int x = 123123123;
   unsigned long t1 = xorshift();
   unsigned long t2 = xor128();
@@ -858,109 +867,116 @@ unsigned int CIprng() {
 
 
 
 
 
 
-In listing~\ref{algo:seqCIprng}  a sequential version of  our chaotic iterations
-based PRNG is  presented.  The xor operator is  represented by \textasciicircum.
-This  function uses  three classical  64-bits PRNG:  the  \texttt{xorshift}, the
-\texttt{xor128}  and  the  \texttt{xorwow}.   In  the following,  we  call  them
-xor-like PRNGSs.   These three PRNGs are  presented in~\cite{Marsaglia2003}.  As
-each xor-like PRNG  used works with 64-bits and as our  PRNG works with 32-bits,
-the use of \texttt{(unsigned int)} selects the 32 least significant bits whereas
-\texttt{(unsigned int)(t3$>>$32)}  selects the 32 most significants  bits of the
-variable \texttt{t}.   So to produce a  random number realizes  6 xor operations
-with 6 32-bits  numbers produced by 3 64-bits PRNG.   This version successes the
-BigCrush of the TestU01 battery~\cite{LEcuyerS07}.
+In Listing~\ref{algo:seqCIPRNG}  a sequential version of  the proposed PRNG based on chaotic iterations
+ is  presented.  The xor operator is  represented by \textasciicircum.
+This  function uses  three classical  64-bits PRNGs, namely the  \texttt{xorshift}, the
+\texttt{xor128},  and  the  \texttt{xorwow}~\cite{Marsaglia2003}.   In  the following,  we  call  them
+``xor-like PRNGs''. 
+As
+each xor-like PRNG  uses 64-bits whereas our proposed generator works with 32-bits,
+we use the command \texttt{(unsigned int)}, that selects the 32 least significant bits of a given integer, and the code
+\texttt{(unsigned int)(t3$>>$32)}  in order to obtain the 32 most significant  bits of \texttt{t}.   
 
 
-\section{Efficient PRNGs based on chaotic iterations on GPU}
-\label{sec:efficient prng gpu}
+So producing a  pseudorandom number needs  6 xor operations
+with 6 32-bits  numbers that are provided by 3 64-bits PRNGs.   This version successfully passes the
+stringent BigCrush battery of tests~\cite{LEcuyerS07}.
 
 
-In  order to benefit  from computing  power of  GPU, a  program needs  to define
-independent blocks of threads which  can be computed simultaneously. In general,
-the larger the number of threads is,  the more local memory is used and the less
-branching  instructions are  used (if,  while, ...),  the better  performance is
-obtained  on  GPU.  So  with  algorithm  \ref{algo:seqCIprng}  presented in  the
-previous section, it is possible to  build a similar program which computes PRNG
-on   GPU.  In  the   CUDA~\cite{Nvid10}  environment,   threads  have   a  local
-identificator, called \texttt{ThreadIdx} relative to the block containing them.
+\section{Efficient PRNGs based on Chaotic Iterations on GPU}
+\label{sec:efficient PRNG gpu}
 
 
+In  order to take benefits  from the computing  power of  GPU, a  program needs  to have
+independent blocks of threads that can be computed simultaneously. In general,
+the larger the number of threads is,  the more local memory is used, and the less
+branching  instructions are  used (if,  while, ...),  the better the performances on GPU is.  
+Obviously, having these requirements in mind, it is possible to  build a program similar to 
+the one presented in Algorithm  \ref{algo:seqCIPRNG}, which computes pseudorandom numbers
+on   GPU.  
+To do so, we must firstly recall that in
+ the   CUDA~\cite{Nvid10}  environment,   threads  have   a  local
+identifier called \texttt{ThreadIdx}, which is relative to the block containing them.
 
 
-\subsection{Naive version for GPU}
 
 
-From the CPU version, it is possible  to obtain a quite similar version for GPU.
-The principe consists in assigning the computation of a PRNG as in sequential to
-each thread  of the  GPU.  Of course,  it is  essential that the  three xor-like
-PRNGs  used for  our computation  have different  parameters. So  we  chose them
-randomly with  another PRNG. As the  initialisation is performed by  the CPU, we
-have  chosen  to  use  the  ISAAC  PRNG~\cite{Jenkins96}  to  initalize  all  the
-parameters for  the GPU version  of our PRNG.   The implementation of  the three
-xor-like  PRNGs  is  straightforward  as  soon as  their  parameters  have  been
-allocated in  the GPU memory.  Each xor-like PRNGs  used works with  an internal
-number  $x$  which keeps  the  last  generated  random numbers.  Other  internal
-variables  are   also  used   by  the  xor-like   PRNGs.  More   precisely,  the
-implementation of the  xor128, the xorshift and the  xorwow respectively require
-4, 5 and 6 unsigned long as internal variables.
+\subsection{Naive Version for GPU}
+
+It is possible to deduce from the CPU version a quite similar version adapted to GPU.
+The simple principle consists to make each thread of the GPU computing the CPU version of our PRNG.  
+Of course,  the  three xor-like
+PRNGs  used in these computations must have different  parameters. 
+In a given thread, these lasts are
+randomly picked from another PRNGs. 
+The  initialization stage is performed by  the CPU.
+To do it, the  ISAAC  PRNG~\cite{Jenkins96} is used to  set  all  the
+parameters embedded into each thread.   
+
+The implementation of  the three
+xor-like  PRNGs  is  straightforward  when  their  parameters  have  been
+allocated in  the GPU memory.  Each xor-like  works with  an internal
+number  $x$  that saves  the  last  generated  pseudorandom number. Additionally,  the
+implementation of the  xor128, the xorshift, and the  xorwow respectively require
+4, 5, and 6 unsigned long as internal variables.
 
 \begin{algorithm}
 
 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
 PRNGs in global memory\;
 
 \begin{algorithm}
 
 \KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
 PRNGs in global memory\;
-NumThreads: Number of threads\;}
+NumThreads: number of threads\;}
 \KwOut{NewNb: array containing random numbers in global memory}
 \If{threadIdx is concerned by the computation} {
   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
   \For{i=1 to n} {
 \KwOut{NewNb: array containing random numbers in global memory}
 \If{threadIdx is concerned by the computation} {
   retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\;
   \For{i=1 to n} {
-    compute a new PRNG as in Listing\ref{algo:seqCIprng}\;
+    compute a new PRNG as in Listing\ref{algo:seqCIPRNG}\;
     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
   }
   store internal variables in InternalVarXorLikeArray[threadIdx]\;
 }
 
     store the new PRNG in NewNb[NumThreads*threadIdx+i]\;
   }
   store internal variables in InternalVarXorLikeArray[threadIdx]\;
 }
 
-\caption{main kernel for the chaotic iterations based PRNG GPU naive version}
+\caption{Main kernel of the GPU ``naive'' version of the PRNG based on chaotic iterations}
 \label{algo:gpu_kernel}
 \end{algorithm}
 
 \label{algo:gpu_kernel}
 \end{algorithm}
 
-Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of  PRNG using
-GPU.  According  to the available  memory in the  GPU and the number  of threads
+Algorithm~\ref{algo:gpu_kernel}  presents a naive  implementation of the proposed  PRNG on
+GPU.  Due to the available  memory in the  GPU and the number  of threads
 used simultenaously,  the number  of random numbers  that a thread  can generate
 used simultenaously,  the number  of random numbers  that a thread  can generate
-inside   a    kernel   is   limited,   i.e.    the    variable   \texttt{n}   in
-algorithm~\ref{algo:gpu_kernel}. For example, if  $100,000$ threads are used and
-if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)}
-then   the  memory   required   to  store   internals   variables  of   xor-like
+inside   a    kernel   is   limited  (\emph{i.e.},    the    variable   \texttt{n}   in
+algorithm~\ref{algo:gpu_kernel}). For instance, if  $100,000$ threads are used and
+if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)},
+then   the  memory   required   to  store all of the  internals   variables  of both the  xor-like
 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
 PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers}
-and  random  number of  our  PRNG  is  equals to  $100,000\times  ((4+5+6)\times
-2+(1+100))=1,310,000$ 32-bits numbers, i.e. about $52$Mb.
+and  the pseudorandom  numbers generated by  our  PRNG,  is  equal to  $100,000\times  ((4+5+6)\times
+2+(1+100))=1,310,000$ 32-bits numbers, that is, approximately $52$Mb.
 
 
-All the  tests performed  to pass the  BigCrush of TestU01  succeeded. Different
-number of threads, called \texttt{NumThreads} in our algorithm, have been tested
-upto $10$ millions.
-\newline
-\newline
-{\bf QUESTION : on laisse cette remarque, je suis mitigé !!!}
+This generator is able to pass the whole BigCrush battery of tests, for all
+the versions that have been tested depending on their number of threads 
+(called \texttt{NumThreads} in our algorithm, tested until $10$ millions).
 
 \begin{remark}
 
 \begin{remark}
-Algorithm~\ref{algo:gpu_kernel}  has  the  advantage to  manipulate  independent
-PRNGs, so this version is easily usable on a cluster of computer. The only thing
-to ensure is to use a single ISAAC PRNG. For this, a simple solution consists in
-using a master node for the initialization which computes the initial parameters
+The proposed algorithm has  the  advantage to  manipulate  independent
+PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing
+to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in
+using a master node for the initialization. This master node computes the initial parameters
 for all the differents nodes involves in the computation.
 \end{remark}
 
 for all the differents nodes involves in the computation.
 \end{remark}
 
-\subsection{Improved version for GPU}
+\subsection{Improved Version for GPU}
 
 As GPU cards using CUDA have shared memory between threads of the same block, it
 is possible  to use this  feature in order  to simplify the  previous algorithm,
 
 As GPU cards using CUDA have shared memory between threads of the same block, it
 is possible  to use this  feature in order  to simplify the  previous algorithm,
-i.e., using less  than 3 xor-like PRNGs. The solution  consists in computing only
-one xor-like PRNG by thread, saving  it into shared memory and using the results
+i.e., to use less  than 3 xor-like PRNGs. The solution  consists in computing only
+one xor-like PRNG by thread, saving  it into the shared memory, and then to use the results
 of some  other threads in the  same block of  threads. In order to  define which
 of some  other threads in the  same block of  threads. In order to  define which
-thread uses the result of which other  one, we can use a permutation array which
+thread uses the result of which other  one, we can use a permutation array that
 contains  the indexes  of  all threads  and  for which  a  permutation has  been
 contains  the indexes  of  all threads  and  for which  a  permutation has  been
-performed.  In Algorithm~\ref{algo:gpu_kernel2}, 2 permutations arrays are used.
+performed. 
+
+In Algorithm~\ref{algo:gpu_kernel2}, two permutations arrays are used.
 The    variable   \texttt{offset}    is    computed   using    the   value    of
 \texttt{permutation\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
 The    variable   \texttt{offset}    is    computed   using    the   value    of
 \texttt{permutation\_size}.   Then we  can compute  \texttt{o1}  and \texttt{o2}
-which represent the indexes of the  other threads for which the results are used
-by the  current thread. In  the algorithm, we  consider that a  64-bits xor-like
-PRNG is used, that is why both 32-bits parts are used.
+representing the indexes of the  other threads whose results are used
+by the  current one. In  this algorithm, we  consider that a  64-bits xor-like
+PRNG has been chosen, and so its two 32-bits parts are used.
 
 
-This version also succeeds to the {\it BigCrush} batteries of tests.
+This version also can pass the whole {\it BigCrush} battery of tests.
 
 \begin{algorithm}
 
 
 \begin{algorithm}
 
@@ -993,22 +1009,28 @@ version}
 
 \subsection{Theoretical Evaluation of the Improved Version}
 
 
 \subsection{Theoretical Evaluation of the Improved Version}
 
-A run of Algorithm~\ref{algo:gpu_kernel2} consists in three operations having 
+A run of Algorithm~\ref{algo:gpu_kernel2} consists in an operation ($x=x\oplus t$) having 
 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
-system of Eq.~\ref{eq:generalIC}. That is, three iterations of the general chaotic
-iterations are realized between two stored values of the PRNG.
+system of Eq.~\ref{eq:generalIC}. That is, an iteration of the general chaotic
+iterations is realized between the last stored value $x$ of the thread and a strategy $t$
+(obtained by a bitwise exclusive or between a value provided by a xor-like() call
+and two values previously obtained by two other threads).
 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
 we must guarantee that this dynamical system iterates on the space 
 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
 The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
 we must guarantee that this dynamical system iterates on the space 
 $\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
 The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
-To prevent from any flaws of chaotic properties, we must check that each right 
-term, corresponding to terms of the strategies,  can possibly be equal to any
+To prevent from any flaws of chaotic properties, we must check that the right 
+term (the last $t$), corresponding to the strategies,  can possibly be equal to any
 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
 
 integer of $\llbracket 1, \mathsf{N} \rrbracket$. 
 
-Such a result is obvious for the two first lines, as for the xor-like(), all the
-integers belonging into its interval of definition can occur at each iteration.
-It can be easily stated for the two last lines by an immediate mathematical
-induction.
+Such a result is obvious, as for the xor-like(), all the
+integers belonging into its interval of definition can occur at each iteration, and thus the 
+last $t$ respects the requirement. Furthermore, it is possible to
+prove by an immediate mathematical induction that, as the initial $x$
+is uniformly distributed (it is provided by a cryptographically secure PRNG),
+the two other stored values shmem[o1] and shmem[o2] are uniformly distributed too,
+(this can be stated by an immediate mathematical
+induction), and thus the next $x$ is finally uniformly distributed.
 
 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
 chaotic iterations presented previously, and for this reason, it satisfies the 
 
 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
 chaotic iterations presented previously, and for this reason, it satisfies the 
@@ -1018,587 +1040,66 @@ Devaney's formulation of a chaotic behavior.
 \label{sec:experiments}
 
 Different experiments  have been  performed in order  to measure  the generation
 \label{sec:experiments}
 
 Different experiments  have been  performed in order  to measure  the generation
-speed. We have used  a computer equiped with Tesla C1060 NVidia  GPU card and an
-Intel  Xeon E5530 cadenced  at 2.40  GHz for  our experiments  and we  have used
-another one  equipped with  a less performant  CPU and  a GeForce GTX  280. Both
+speed. We have used a first computer equipped with a Tesla C1060 NVidia  GPU card
+and an
+Intel  Xeon E5530 cadenced  at 2.40  GHz,  and 
+a second computer  equipped with a smaller  CPU and  a GeForce GTX  280. 
+All the
 cards have 240 cores.
 
 cards have 240 cores.
 
-In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  number of  random numbers
-generated per second with the xor-like based PRNG. In this figure, the optimized
-version use the {\it xor64} described in~\cite{Marsaglia2003}. The naive version
-use  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIprng}.   In
-order to obtain the optimal performance we removed the storage of random numbers
-in the GPU memory. This step is time consuming and slows down the random numbers
-generation.  Moreover, if one is  interested by applications that consume random
-numbers  directly   when  they  are  generated,  their   storage  are  completely
-useless. In this  figure we can see  that when the number of  threads is greater
-than approximately 30,000 upto 5 millions the number of random numbers generated
-per second  is almost constant.  With the  naive version, it is  between 2.5 and
-3GSample/s.   With  the  optimized   version,  it  is  approximately  equals  to
-20GSample/s. Finally  we can remark  that both GPU  cards are quite  similar. In
-practice,  the Tesla C1060  has more  memory than  the GTX  280 and  this memory
+In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  quantity of  pseudorandom numbers
+generated per second with various xor-like based PRNG. In this figure, the optimized
+versions use the {\it xor64} described in~\cite{Marsaglia2003}, whereas the naive versions
+embed  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIPRNG}.   In
+order to obtain the optimal performances, the storage of pseudorandom numbers
+into the GPU memory has been removed. This step is time consuming and slows down the numbers
+generation.  Moreover this   storage  is  completely
+useless, in case of applications that consume the pseudorandom
+numbers  directly   after generation. We can see  that when the number of  threads is greater
+than approximately 30,000 and lower than 5 millions, the number of pseudorandom numbers generated
+per second  is almost constant.  With the  naive version, this value ranges from 2.5 to
+3GSamples/s.   With  the  optimized   version,  it  is  approximately  equal to
+20GSamples/s. Finally  we can remark  that both GPU  cards are quite  similar, but in
+practice,  the Tesla C1060  has more  memory than  the GTX  280, and  this memory
 should be of better quality.
 should be of better quality.
+As a  comparison,   Listing~\ref{algo:seqCIPRNG}  leads   to the  generation of  about
+138MSample/s when using one core of the Xeon E5530.
 
 \begin{figure}[htbp]
 \begin{center}
   \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
 \end{center}
 
 \begin{figure}[htbp]
 \begin{center}
   \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
 \end{center}
-\caption{Number of random numbers generated per second with the xorlike based PRNG}
+\caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
 \label{fig:time_xorlike_gpu}
 \end{figure}
 
 
 \label{fig:time_xorlike_gpu}
 \end{figure}
 
 
-In  comparison,   Listing~\ref{algo:seqCIprng}  allows  us   to  generate  about
-138MSample/s with only one core of the Xeon E5530.
 
 
 
 
-In Figure~\ref{fig:time_bbs_gpu}  we highlight the performance  of the optimized
-BBS based  PRNG on GPU. Performances are  less important. On the  Tesla C1060 we
-obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s.
+
+In Figure~\ref{fig:time_bbs_gpu}  we highlight the performances  of the optimized
+BBS-based  PRNG on GPU. On the  Tesla C1060 we
+obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s, which is
+obviously slower than the xorlike-based PRNG on GPU. However, we will show in the 
+next sections that 
+this new PRNG has a strong level of security, which is necessary paid by a speed
+reduction. 
 
 \begin{figure}[htbp]
 \begin{center}
   \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
 \end{center}
 
 \begin{figure}[htbp]
 \begin{center}
   \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
 \end{center}
-\caption{Number of random numbers generated per second with the BBS based PRNG}
+\caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
 \label{fig:time_bbs_gpu}
 \end{figure}
 
 \label{fig:time_bbs_gpu}
 \end{figure}
 
-Both  these  experimentations allows  us  to conclude  that  it  is possible  to
-generate a  huge number of pseudorandom  numbers with the  xor-like version and
-about tens  times less with the BBS  based version. The former  version has only
-chaotic properties whereas the latter also has cryptographically properties.
-
-
-%% \section{Cryptanalysis of the Proposed PRNG}
-
-
-%% Mettre ici la preuve de PCH
-
-%\section{The relativity of disorder}
-%\label{sec:de la relativité du désordre}
-
-%In the next two sections, we investigate the impact of the choices that have
-%lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
-
-%\subsection{Impact of the topology's finenesse}
-
-%Let us firstly introduce the following notations.
-
-%\begin{notation}
-%$\mathcal{X}_\tau$ will denote the topological space
-%$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
-%of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
-%$\mathcal{V} (x)$, if there is no ambiguity).
-%\end{notation}
-
-
-
-%\begin{theorem}
-%\label{Th:chaos et finesse}
-%Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
-%$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
-%both for $\tau$ and $\tau'$.
-
-%If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
-%$(\mathcal{X}_\tau,f)$ is chaotic too.
-%\end{theorem}
-
-%\begin{proof}
-%Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
-
-%Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
-%\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
-%can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
-%\varnothing$. Consequently, $f$ is $\tau-$transitive.
-
-%Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
-%all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
-%periodic point for $f$ into $V$.
-
-%Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
-%of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
+All  these  experiments allow  us  to conclude  that  it  is possible  to
+generate a very large quantity of pseudorandom  numbers statistically perfect with the  xor-like version.
+In a certain extend, it is the case too with the secure BBS-based version, the speed deflation being
+explained by the fact that the former  version has ``only''
+chaotic properties and statistical perfection, whereas the latter is also cryptographically secure,
+as it is shown in the next sections.
 
 
-%But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
-%\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
-%periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
-%proven. 
-%\end{proof}
-
-%\subsection{A given system can always be claimed as chaotic}
-
-%Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
-%Then this function is chaotic (in a certain way):
-
-%\begin{theorem}
-%Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
-%at least a fixed point.
-%Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
-%topology on $\X$.
-%\end{theorem}
-
-
-%\begin{proof}
-%$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
-%\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
-%\varnothing$.
-%As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
-%an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
-%instance, $n=0$ is appropriate.
-
-%Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
-%\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
-%regular, and the result is established.
-%\end{proof}
-
-
-
-
-%\subsection{A given system can always be claimed as non-chaotic}
-
-%\begin{theorem}
-%Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
-%If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
-%(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
-%\end{theorem}
-
-%\begin{proof}
-%Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
-%f\right)$ is both transitive and regular.
-
-%Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
-%contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
-%f\right)$ is regular. Then $x$ must be a periodic point of $f$.
-
-%Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
-%because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
-%\mathcal{X}, y \notin I_x$.
-
-%As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
-%sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
-%\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
-%\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
-%\end{proof}
-
-
-
-
-
-
-%\section{Chaos on the order topology}
-%\label{sec: chaos order topology}
-%\subsection{The phase space is an interval of the real line}
-
-%\subsubsection{Toward a topological semiconjugacy}
-
-%In what follows, our intention is to establish, by using a topological
-%semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
-%iterations on a real interval. To do so, we must firstly introduce some
-%notations and terminologies. 
-
-%Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
-%1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
-%\times \B^\mathsf{N}$.
-
-
-%\begin{definition}
-%The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
-%0, 2^{10} \big[$ is defined by:
-%\begin{equation}
-% \begin{array}{cccl}
-%\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
-%\longrightarrow & \big[ 0, 2^{10} \big[ \\
-% & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
-%\varphi \left((S,E)\right)
-%\end{array}
-%\end{equation}
-%where $\varphi\left((S,E)\right)$ is the real number:
-%\begin{itemize}
-%\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
-%is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
-%\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
-%\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
-%\end{itemize}
-%\end{definition}
-
-
-
-%$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
-%real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
-%iterations $\Go$ on this real interval. To do so, two intermediate functions
-%over $\big[ 0, 2^{10} \big[$ must be introduced:
-
-
-%\begin{definition}
-%\label{def:e et s}
-%Let $x \in \big[ 0, 2^{10} \big[$ and:
-%\begin{itemize}
-%\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
-%$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
-%\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
-%decomposition of $x$ is the one that does not have an infinite number of 9: 
-%$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
-%\end{itemize}
-%$e$ and $s$ are thus defined as follows:
-%\begin{equation}
-%\begin{array}{cccl}
-%e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
-% & x & \longmapsto & (e_0, \hdots, e_9)
-%\end{array}
-%\end{equation}
-%and
-%\begin{equation}
-% \begin{array}{cccc}
-%s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
-%\rrbracket^{\mathds{N}} \\
-% & x & \longmapsto & (s^k)_{k \in \mathds{N}}
-%\end{array}
-%\end{equation}
-%\end{definition}
-
-%We are now able to define the function $g$, whose goal is to translate the
-%chaotic iterations $\Go$ on an interval of $\mathds{R}$.
-
-%\begin{definition}
-%$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
-%\begin{equation}
-%\begin{array}{cccc}
-%g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
-% & x & \longmapsto & g(x)
-%\end{array}
-%\end{equation}
-%where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
-%\begin{itemize}
-%\item its integral part has a binary decomposition equal to $e_0', \hdots,
-%e_9'$, with:
-% \begin{equation}
-%e_i' = \left\{
-%\begin{array}{ll}
-%e(x)_i & \textrm{ if } i \neq s^0\\
-%e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
-%\end{array}
-%\right.
-%\end{equation}
-%\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
-%\end{itemize}
-%\end{definition}
-
-%\bigskip
-
-
-%In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
-%\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
-%\begin{equation}
-%g(x) =
-%\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
-%\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
-%\end{equation}
-
-
-%\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
-
-%Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
-%usual one being the Euclidian distance recalled bellow:
-
-%\begin{notation}
-%\index{distance!euclidienne}
-%$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
-%$\Delta(x,y) = |y-x|^2$.
-%\end{notation}
-
-%\medskip
-
-%This Euclidian distance does not reproduce exactly the notion of proximity
-%induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
-%This is the reason why we have to introduce the following metric:
-
-
-
-%\begin{definition}
-%Let $x,y \in \big[ 0, 2^{10} \big[$.
-%$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
-%defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
-%where:
-%\begin{center}
-%$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
-%\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
-%\dfrac{|S^k-\check{S}^k|}{10^k}}$.
-%\end{center}
-%\end{definition}
-
-%\begin{proposition}
-%$D$ is a distance on $\big[ 0, 2^{10} \big[$.
-%\end{proposition}
-
-%\begin{proof}
-%The three axioms defining a distance must be checked.
-%\begin{itemize}
-%\item $D \geqslant 0$, because everything is positive in its definition. If
-%$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
-%(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
-%$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
-%the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
-%\item $D(x,y)=D(y,x)$.
-%\item Finally, the triangular inequality is obtained due to the fact that both
-%$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
-%\end{itemize}
-%\end{proof}
-
-
-%The convergence of sequences according to $D$ is not the same than the usual
-%convergence related to the Euclidian metric. For instance, if $x^n \to x$
-%according to $D$, then necessarily the integral part of each $x^n$ is equal to
-%the integral part of $x$ (at least after a given threshold), and the decimal
-%part of $x^n$ corresponds to the one of $x$ ``as far as required''.
-%To illustrate this fact, a comparison between $D$ and the Euclidian distance is
-%given Figure \ref{fig:comparaison de distances}. These illustrations show that
-%$D$ is richer and more refined than the Euclidian distance, and thus is more
-%precise.
-
-
-%\begin{figure}[t]
-%\begin{center}
-%  \subfigure[Function $x \to dist(x;1,234) $ on the interval
-%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
-%  \subfigure[Function $x \to dist(x;3) $ on the interval
-%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
-%\end{center}
-%\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
-%\label{fig:comparaison de distances}
-%\end{figure}
-
-
-
-
-%\subsubsection{The semiconjugacy}
-
-%It is now possible to define a topological semiconjugacy between $\mathcal{X}$
-%and an interval of $\mathds{R}$:
-
-%\begin{theorem}
-%Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
-%$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
-%\begin{equation*}
-%\begin{CD}
-%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
-%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
-%    @V{\varphi}VV                    @VV{\varphi}V\\
-%\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
-%D~\right)
-%\end{CD}
-%\end{equation*}
-%\end{theorem}
-
-%\begin{proof}
-%$\varphi$ has been constructed in order to be continuous and onto.
-%\end{proof}
-
-%In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
-%\big[$.
-
-
-
-
-
-
-%\subsection{Study of the chaotic iterations described as a real function}
-
-
-%\begin{figure}[t]
-%\begin{center}
-%  \subfigure[ICs on the interval
-%$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
-%  \subfigure[ICs on the interval
-%$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
-%  \subfigure[ICs on the interval
-%$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
-%  \subfigure[ICs on the interval
-%$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
-%\end{center}
-%\caption{Representation of the chaotic iterations.}
-%\label{fig:ICs}
-%\end{figure}
-
-
-
-
-%\begin{figure}[t]
-%\begin{center}
-%  \subfigure[ICs on the interval
-%$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
-%  \subfigure[ICs on the interval
-%$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
-%\end{center}
-%\caption{ICs on small intervals.}
-%\label{fig:ICs2}
-%\end{figure}
-
-%\begin{figure}[t]
-%\begin{center}
-%  \subfigure[ICs on the interval
-%$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
-%  \subfigure[ICs on the interval 
-%$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
-%\end{center}
-%\caption{General aspect of the chaotic iterations.}
-%\label{fig:ICs3}
-%\end{figure}
-
-
-%We have written a Python program to represent the chaotic iterations with the
-%vectorial negation on the real line $\mathds{R}$. Various representations of
-%these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
-%It can be remarked that the function $g$ is a piecewise linear function: it is
-%linear on each interval having the form $\left[ \dfrac{n}{10},
-%\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
-%slope is equal to 10. Let us justify these claims:
-
-%\begin{proposition}
-%\label{Prop:derivabilite des ICs}
-%Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
-%$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
-%\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
-
-%Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
-%\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
-%$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
-%g'(x)=10$.
-%\end{proposition}
-
-
-%\begin{proof}
-%Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
-%0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
-%prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
-%and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
-%the images $g(x)$ of these points $x$:
-%\begin{itemize}
-%\item Have the same integral part, which is $e$, except probably the bit number
-%$s^0$. In other words, this integer has approximately the same binary
-%decomposition than $e$, the sole exception being the digit $s^0$ (this number is
-%then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
-%\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
-%\item A shift to the left has been applied to the decimal part $y$, losing by
-%doing so the common first digit $s^0$. In other words, $y$ has been mapped into
-%$10\times y - s^0$.
-%\end{itemize}
-%To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
-%multiplication by 10, and second, add the same constant to each term, which is
-%$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
-%\end{proof}
-
-%\begin{remark}
-%Finally, chaotic iterations are elements of the large family of functions that
-%are both chaotic and piecewise linear (like the tent map).
-%\end{remark}
-
-
-
-%\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
-
-%The two propositions bellow allow to compare our two distances on $\big[ 0,
-%2^\mathsf{N} \big[$:
-
-%\begin{proposition}
-%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
-%2^\mathsf{N} \big[, D~\right)$ is not continuous. 
-%\end{proposition}
-
-%\begin{proof}
-%The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
-%such that:
-%\begin{itemize}
-%\item $\Delta (x^n,2) \to 0.$
-%\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
-%\end{itemize}
-
-%The sequential characterization of the continuity concludes the demonstration.
-%\end{proof}
-
-
-
-%A contrario:
-
-%\begin{proposition}
-%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
-%2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
-%\end{proposition}
-
-%\begin{proof}
-%If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
-%threshold, because $D_e$ only returns integers. So, after this threshold, the
-%integral parts of all the $x^n$ are equal to the integral part of $x$. 
-
-%Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
-%\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
-%means that for all $k$, an index $N_k$ can be found such that, $\forall n
-%\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
-%digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
-%result.
-%\end{proof}
-
-%The conclusion of these propositions is that the proposed metric is more precise
-%than the Euclidian distance, that is:
-
-%\begin{corollary}
-%$D$ is finer than the Euclidian distance $\Delta$.
-%\end{corollary}
-
-%This corollary can be reformulated as follows:
-
-%\begin{itemize}
-%\item The topology produced by $\Delta$ is a subset of the topology produced by
-%$D$.
-%\item $D$ has more open sets than $\Delta$.
-%\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
-%to converge with the one inherited by $\Delta$, which is denoted here by
-%$\tau_\Delta$.
-%\end{itemize}
-
-
-%\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
-%\label{chpt:Chaos des itérations chaotiques sur R}
-
-
-
-%\subsubsection{Chaos according to Devaney}
-
-%We have recalled previously that the chaotic iterations $\left(\Go,
-%\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
-%can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
-%topology, because:
-%\begin{itemize}
-%\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
-%\big[_D\right)$ are semiconjugate by $\varphi$,
-%\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
-%according to Devaney, because the semiconjugacy preserve this character.
-%\item But the topology generated by $D$ is finer than the topology generated by
-%the Euclidian distance $\Delta$ -- which is the order topology.
-%\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
-%chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
-%topology on $\mathds{R}$.
-%\end{itemize}
-
-%This result can be formulated as follows.
-
-%\begin{theorem}
-%\label{th:IC et topologie de l'ordre}
-%The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
-%Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
-%order topology.
-%\end{theorem}
-
-%Indeed this result is weaker than the theorem establishing the chaos for the
-%finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
-%still remains important. Indeed, we have studied in our previous works a set
-%different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
-%in order to be as close as possible from the computer: the properties of
-%disorder proved theoretically will then be preserved when computing. However, we
-%could wonder whether this change does not lead to a disorder of a lower quality.
-%In other words, have we replaced a situation of a good disorder lost when
-%computing, to another situation of a disorder preserved but of bad quality.
-%Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
-% 
 
 
 
 
 
 
@@ -1622,7 +1123,7 @@ The notion of {\it secure} PRNGs can now be defined as follows.
 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
 large $k$'s,
 A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
 algorithm $D$, for any positive polynomial $p$, and for all sufficiently
 large $k$'s,
-$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)}=1]|< \frac{1}{p(N)},$$
+$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)})=1]|< \frac{1}{p(N)},$$
 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
 probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
 internal coin tosses of $D$. 
 where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
 probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
 internal coin tosses of $D$. 
@@ -1649,6 +1150,7 @@ We claim now that if this PRNG is secure,
 then the new one is secure too.
 
 \begin{proposition}
 then the new one is secure too.
 
 \begin{proposition}
+\label{cryptopreuve}
 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
 PRNG too.
 \end{proposition}
 If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
 PRNG too.
 \end{proposition}
@@ -1715,40 +1217,50 @@ proving that $H$ is not secure, a contradiction.
 \end{proof}
 
 
 \end{proof}
 
 
+\section{Cryptographical Applications}
 
 
-
-\section{A cryptographically secure prng for GPU}
+\subsection{A Cryptographically Secure PRNG for GPU}
 \label{sec:CSGPU}
 \label{sec:CSGPU}
-It is  possible to build a  cryptographically secure prng based  on the previous
-algorithm (algorithm~\ref{algo:gpu_kernel2}).   It simply consists  in replacing
-the  {\it  xor-like} algorithm  by  another  cryptographically  secure prng.  In
-practice, we suggest  to use the BBS algorithm~\cite{BBS}  which takes the form:
-$$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. Those
-prime numbers  need to be congruent  to 3 modulus  4. In practice, this  PRNG is
-known to  be slow and  not efficient for  the generation of random  numbers. For
-current  GPU   cards,  the  modulus   operation  is  the  most   time  consuming
-operation. So in  order to obtain quite reasonable  performances, it is required
+
+It is  possible to build a  cryptographically secure PRNG based  on the previous
+algorithm (Algorithm~\ref{algo:gpu_kernel2}).   Due to Proposition~\ref{cryptopreuve},
+it simply consists  in replacing
+the  {\it  xor-like} PRNG  by  a  cryptographically  secure one.  
+We have chosen the Blum Blum Shum generator~\cite{BBS} (usually denoted by BBS) having the form:
+$$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. These
+prime numbers  need to be congruent  to 3 modulus  4. BBS is
+very slow and only usable for cryptographic applications. 
+
+  
+The  modulus   operation  is  the  most   time  consuming operation for
+current  GPU   cards. 
+So in  order to obtain quite reasonable  performances, it is required
 to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
 less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
 to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
 less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
-pratice we can  choose prime numbers around 256 that are  congruent to 3 modulus
+practice we can  choose prime numbers around 256 that are  congruent to 3 modulus
 4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
 4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
-chosen  (the   maximum  number  of   undistinguishing  is  less  or   equals  to
+chosen  (the   maximum  number  of   indistinguishable bits  is  lesser than  or   equals  to
 $log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
 $log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
-the BBS algorithm, with different combinations of $M$ is required.
+the BBS algorithm with different combinations of $M$.
 
 Currently this PRNG does not succeed to pass all the tests of TestU01.
 
 
 
 Currently this PRNG does not succeed to pass all the tests of TestU01.
 
 
+\subsection{A Secure Asymetric Cryptosystem}
+
+
+
+
 \section{Conclusion}
 
 
 In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
 \section{Conclusion}
 
 
 In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
-iterations. We have proven that these PRNGs are chaotic in the sense of Devenay.
+iterations. We have proven that these PRNGs are chaotic in the sense of Devaney.
 We also propose a PRNG cryptographically secure and its implementation on GPU.
 
 An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
 generate   a  huge   number   of  pseudorandom   numbers   per  second   (about
 We also propose a PRNG cryptographically secure and its implementation on GPU.
 
 An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
 generate   a  huge   number   of  pseudorandom   numbers   per  second   (about
-20Gsample/s). This PRNG succeeds to pass the hardest batteries of TestU01.
+20Gsamples/s). This PRNG succeeds to pass the hardest batteries of TestU01.
 
 In future  work we plan to  extend this work  for parallel PRNG for  clusters or
 grid computing. We also plan to improve  the BBS version in order to succeed all
 
 In future  work we plan to  extend this work  for parallel PRNG for  clusters or
 grid computing. We also plan to improve  the BBS version in order to succeed all