+Random numbers are used in many scientific applications and simulations. On
+finite state machines, as computers, it is not possible to generate random
+numbers but only pseudo-random numbers. In practice, a good pseudo-random number
+generator (PRNG) needs to verify some features to be used by scientists. It is
+important to be able to generate pseudo-random numbers efficiently, the
+generation needs to be reproducible and a PRNG needs to satisfy many usual
+statistical properties. Finally, from our point a view, it is essential to prove
+that a PRNG is chaotic. Concerning the statistical tests, TestU01 is the
+best-known public-domain statistical testing package. So we use it for all our
+PRNGs, especially the {\it BigCrush} which provides the largest serie of tests.
+Concerning the chaotic properties, Devaney~\cite{Devaney} proposed a common
+mathematical formulation of chaotic dynamical systems.
+
+In a previous work~\cite{bgw09:ip} we have proposed a new familly of chaotic
+PRNG based on chaotic iterations (IC). We have proven that these PRNGs are
+chaotic in the Devaney's sense. In this paper we propose a faster version which
+is also proven to be chaotic.
+
+Although graphics processing units (GPU) was initially designed to accelerate
+the manipulation of images, they are nowadays commonly used in many scientific
+applications. Therefore, it is important to be able to generate pseudo-random
+numbers inside a GPU when a scientific application runs in a GPU. That is why we
+also provide an efficient PRNG for GPU respecting based on IC.
+
+
+
+