-\begin{definition}
-$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
-\begin{equation}
-\begin{array}{cccc}
-g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
- & x & \longmapsto & g(x)
-\end{array}
-\end{equation}
-where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
-\begin{itemize}
-\item its integral part has a binary decomposition equal to $e_0', \hdots,
-e_9'$, with:
- \begin{equation}
-e_i' = \left\{
-\begin{array}{ll}
-e(x)_i & \textrm{ if } i \neq s^0\\
-e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
-\end{array}
-\right.
-\end{equation}
-\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
-\end{itemize}
-\end{definition}
-
-\bigskip
-
-
-In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k +
-\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
-\begin{equation}
-g(x) =
-\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) +
-\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}.
-\end{equation}
-
-
-\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
-
-Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
-usual one being the Euclidian distance recalled bellow:
-
-\begin{notation}
-\index{distance!euclidienne}
-$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
-$\Delta(x,y) = |y-x|^2$.
-\end{notation}
-
-\medskip
-
-This Euclidian distance does not reproduce exactly the notion of proximity
-induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
-This is the reason why we have to introduce the following metric:
-
-
-
-\begin{definition}
-Let $x,y \in \big[ 0, 2^{10} \big[$.
-$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
-defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
-where:
-\begin{center}
-$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
-\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
-\dfrac{|S^k-\check{S}^k|}{10^k}}$.
-\end{center}
-\end{definition}
-
-\begin{proposition}
-$D$ is a distance on $\big[ 0, 2^{10} \big[$.
-\end{proposition}
-
-\begin{proof}
-The three axioms defining a distance must be checked.
-\begin{itemize}
-\item $D \geqslant 0$, because everything is positive in its definition. If
-$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
-(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
-$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
-the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
-\item $D(x,y)=D(y,x)$.
-\item Finally, the triangular inequality is obtained due to the fact that both
-$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
-\end{itemize}
-\end{proof}
-
-
-The convergence of sequences according to $D$ is not the same than the usual
-convergence related to the Euclidian metric. For instance, if $x^n \to x$
-according to $D$, then necessarily the integral part of each $x^n$ is equal to
-the integral part of $x$ (at least after a given threshold), and the decimal
-part of $x^n$ corresponds to the one of $x$ ``as far as required''.
-To illustrate this fact, a comparison between $D$ and the Euclidian distance is
-given Figure \ref{fig:comparaison de distances}. These illustrations show that
-$D$ is richer and more refined than the Euclidian distance, and thus is more
-precise.
-
-
-\begin{figure}[t]
-\begin{center}
- \subfigure[Function $x \to dist(x;1,234) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
- \subfigure[Function $x \to dist(x;3) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
-\end{center}
-\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
-\label{fig:comparaison de distances}
-\end{figure}
-
-
-
-
-\subsubsection{The semiconjugacy}
-
-It is now possible to define a topological semiconjugacy between $\mathcal{X}$
-and an interval of $\mathds{R}$:
-
-\begin{theorem}
-Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
-$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
-\begin{equation*}
-\begin{CD}
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
- @V{\varphi}VV @VV{\varphi}V\\
-\left( ~\big[ 0, 2^{10} \big[, D~\right) @>>g> \left(~\big[ 0, 2^{10} \big[,
-D~\right)
-\end{CD}
-\end{equation*}
-\end{theorem}
-
-\begin{proof}
-$\varphi$ has been constructed in order to be continuous and onto.
-\end{proof}
-
-In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
-\big[$.
-
-
-
-
-
-
-\subsection{Study of the chaotic iterations described as a real function}
-
-
-\begin{figure}[t]
-\begin{center}
- \subfigure[ICs on the interval
-$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
- \subfigure[ICs on the interval
-$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
- \subfigure[ICs on the interval
-$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
- \subfigure[ICs on the interval
-$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
-\end{center}
-\caption{Representation of the chaotic iterations.}
-\label{fig:ICs}
-\end{figure}
-
-
-
-
-\begin{figure}[t]
-\begin{center}
- \subfigure[ICs on the interval
-$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
- \subfigure[ICs on the interval
-$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
-\end{center}
-\caption{ICs on small intervals.}
-\label{fig:ICs2}
-\end{figure}
-
-\begin{figure}[t]
-\begin{center}
- \subfigure[ICs on the interval
-$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
- \subfigure[ICs on the interval
-$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
-\end{center}
-\caption{General aspect of the chaotic iterations.}
-\label{fig:ICs3}
-\end{figure}
-
-
-We have written a Python program to represent the chaotic iterations with the
-vectorial negation on the real line $\mathds{R}$. Various representations of
-these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
-It can be remarked that the function $g$ is a piecewise linear function: it is
-linear on each interval having the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
-slope is equal to 10. Let us justify these claims:
-
-\begin{proposition}
-\label{Prop:derivabilite des ICs}
-Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
-$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
-\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
-
-Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
-$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
-g'(x)=10$.
-\end{proposition}
-
-
-\begin{proof}
-Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
-0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
-prat $e$ and the same decimal part $s^0$: on the set $I_n$, functions $e(x)$
-and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
-the images $g(x)$ of these points $x$:
-\begin{itemize}
-\item Have the same integral part, which is $e$, except probably the bit number
-$s^0$. In other words, this integer has approximately the same binary
-decomposition than $e$, the sole exception being the digit $s^0$ (this number is
-then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
-\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
-\item A shift to the left has been applied to the decimal part $y$, losing by
-doing so the common first digit $s^0$. In other words, $y$ has been mapped into
-$10\times y - s^0$.
-\end{itemize}
-To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
-multiplication by 10, and second, add the same constant to each term, which is
-$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
-\end{proof}
-
-\begin{remark}
-Finally, chaotic iterations are elements of the large family of functions that
-are both chaotic and piecewise linear (like the tent map).
-\end{remark}
-
-
-
-\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
-
-The two propositions bellow allow to compare our two distances on $\big[ 0,
-2^\mathsf{N} \big[$:
-
-\begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, D~\right)$ is not continuous.
-\end{proposition}
-
-\begin{proof}
-The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
-such that:
-\begin{itemize}
-\item $\Delta (x^n,2) \to 0.$
-\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
-\end{itemize}
-
-The sequential characterization of the continuity concludes the demonstration.
-\end{proof}
-
-
-
-A contrario:
-
-\begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction.
-\end{proposition}
-
-\begin{proof}
-If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
-threshold, because $D_e$ only returns integers. So, after this threshold, the
-integral parts of all the $x^n$ are equal to the integral part of $x$.
-
-Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
-\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
-means that for all $k$, an index $N_k$ can be found such that, $\forall n
-\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
-digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
-result.
-\end{proof}
-
-The conclusion of these propositions is that the proposed metric is more precise
-than the Euclidian distance, that is:
-
-\begin{corollary}
-$D$ is finer than the Euclidian distance $\Delta$.
-\end{corollary}
-
-This corollary can be reformulated as follows:
-
-\begin{itemize}
-\item The topology produced by $\Delta$ is a subset of the topology produced by
-$D$.
-\item $D$ has more open sets than $\Delta$.
-\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
-to converge with the one inherited by $\Delta$, which is denoted here by
-$\tau_\Delta$.
-\end{itemize}
-
-
-\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
-\label{chpt:Chaos des itérations chaotiques sur R}
-
-
-
-\subsubsection{Chaos according to Devaney}
-
-We have recalled previously that the chaotic iterations $\left(\Go,
-\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
-can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
-topology, because:
-\begin{itemize}
-\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
-\big[_D\right)$ are semiconjugate by $\varphi$,
-\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
-according to Devaney, because the semiconjugacy preserve this character.
-\item But the topology generated by $D$ is finer than the topology generated by
-the Euclidian distance $\Delta$ -- which is the order topology.
-\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
-chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
-topology on $\mathds{R}$.
-\end{itemize}
-
-This result can be formulated as follows.
-
-\begin{theorem}
-\label{th:IC et topologie de l'ordre}
-The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
-Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
-order topology.
-\end{theorem}