]> AND Private Git Repository - prng_gpu.git/blobdiff - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Ajout e la preuve de pch
[prng_gpu.git] / prng_gpu.tex
index 5b07118a5f04aaeae8bc521e7aa1998e4d324321..d2e5e0547d736054ce547ef49dd39e7b5f0c1a3c 100644 (file)
@@ -39,14 +39,14 @@ on GPU}
 \begin{document}
 
 \author{Jacques M. Bahi, Rapha\"{e}l Couturier, and Christophe
-Guyeux\thanks{Authors in alphabetic order}}
+Guyeux, Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
 
 \maketitle
 
 \begin{abstract}
-In this paper we present a new produce pseudo-random numbers generator (PRNG) on
+In this paper we present a new pseudo-random numbers generator (PRNG) on
 graphics processing units  (GPU). This PRNG is based  on chaotic iterations.  it
-is proven  to be chaotic  in the Devany's  formulation. We propose  an efficient
+is proven  to be chaotic  in the Devanay's  formulation. We propose  an efficient
 implementation  for  GPU which  succeeds  to  the  {\it BigCrush},  the  hardest
 batteries of test of TestU01.  Experimentations show that this PRNG can generate
 about 20 billions of random numbers  per second on Tesla C1060 and NVidia GTX280
@@ -59,7 +59,7 @@ cards.
 
 Random  numbers are  used in  many scientific  applications and  simulations. On
 finite  state machines,  as computers,  it is  not possible  to  generate random
-numbers but only pseudo-random numbers. In practice, a good pseudo-random number
+numbers but only pseudo-random numbers. In practice, a good pseudo-random numbers
 generator (PRNG) needs  to verify some features to be used  by scientists. It is
 important  to  be  able  to  generate  pseudo-random  numbers  efficiently,  the
 generation  needs to  be reproducible  and a  PRNG needs  to satisfy  many usual
@@ -83,9 +83,7 @@ also provide  an efficient  PRNG for  GPU respecting based  on IC.  Such devices
 allows us to generated almost 20 billions of random numbers per second.
 
 In order  to establish  that our  PRNGs are chaotic  according to  the Devaney's
-formulation, we  extend what we  have proposed in~\cite{guyeux10}.  Moreover, we
-define a  new distance to measure  the disorder in  the chaos and we  prove some
-interesting properties with this distance.
+formulation, we  extend what we  have proposed in~\cite{guyeux10}.
 
 The rest of this paper  is organised as follows. In Section~\ref{section:related
   works} we  review some GPU implementions  of PRNG.  Section~\ref{section:BASIC
@@ -95,10 +93,7 @@ is   studied.    Section~\ref{sec:efficient    prng}   presents   an   efficient
 implementation of  our chaotic PRNG  on a CPU.   Section~\ref{sec:efficient prng
   gpu}   describes   the  GPU   implementation   of   our   chaotic  PRNG.    In
 Section~\ref{sec:experiments}     some    experimentations     are    presented.
-Section~\ref{sec:de  la  relativité du  désordre}  describes  the relativity  of
-disorder.   In Section~\ref{sec: chaos  order topology}  the proof  that chaotic
-iterations   can  be   described   by   iterations  on   a   real  interval   is
-established. Finally, we give a conclusion and some perspectives.
+ Finally, we give a conclusion and some perspectives.
 
 
 
@@ -134,6 +129,12 @@ efficient one because it provides the fastest number of generated random numbers
 per joule. Concerning the GPU,  authors can generate betweend 11 and 16GSample/s
 with a GTX 280  GPU. The drawback of this work is  that those PRNGs only succeed
 the {\it Crush} test which is easier than the {\it Big Crush} test.
+
+Cuda  has developped  a  library for  the  generation of  random numbers  called
+Curand~\cite{curand11}.        Several       PRNGs        are       implemented:
+Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. Some  tests report that
+the  fastest version provides  15GSample/s on  the new  Fermi C2050  card. Their
+PRNGs fail to succeed the whole tests of TestU01 on only one test.
 \newline
 \newline
 To the best of our knowledge no GPU implementation have been proven to have chaotic properties.
@@ -413,7 +414,7 @@ It takes as input: a function $f$;
 an integer $b$, ensuring that the number of executed iterations is at least $b$
 and at most $2b+1$; and an initial configuration $x^0$.
 It returns the new generated configuration $x$.  Internally, it embeds two
-\textit{XORshift}$(k)$ PRNGs \cite{Marsaglia2003} that returns integers
+\textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
 uniformly distributed
 into $\llbracket 1 ; k \rrbracket$.
 \textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
@@ -860,6 +861,9 @@ and  random  number of  our  PRNG  is  equals to  $100,000\times  ((4+5+6)\times
 All the  tests performed  to pass the  BigCrush of TestU01  succeeded. Different
 number of threads, called \texttt{NumThreads} in our algorithm, have been tested
 upto $10$ millions.
+\newline
+\newline
+{\bf QUESTION : on laisse cette remarque, je suis mitigé !!!}
 
 \begin{remark}
 Algorithm~\ref{algo:gpu_kernel}  has  the  advantage to  manipulate  independent
@@ -978,538 +982,667 @@ In  comparison,   Listing~\ref{algo:seqCIprng}  allows  us   to  generate  about
 
 
 
-\section{The relativity of disorder}
-\label{sec:de la relativité du désordre}
+%% \section{Cryptanalysis of the Proposed PRNG}
 
-In the next two sections, we investigate the impact of the choices that have
-lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
 
-\subsection{Impact of the topology's finenesse}
+%% Mettre ici la preuve de PCH
 
-Let us firstly introduce the following notations.
+%\section{The relativity of disorder}
+%\label{sec:de la relativité du désordre}
 
-\begin{notation}
-$\mathcal{X}_\tau$ will denote the topological space
-$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
-of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
-$\mathcal{V} (x)$, if there is no ambiguity).
-\end{notation}
+%In the next two sections, we investigate the impact of the choices that have
+%lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
 
+%\subsection{Impact of the topology's finenesse}
 
+%Let us firstly introduce the following notations.
 
-\begin{theorem}
-\label{Th:chaos et finesse}
-Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
-$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
-both for $\tau$ and $\tau'$.
+%\begin{notation}
+%$\mathcal{X}_\tau$ will denote the topological space
+%$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
+%of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
+%$\mathcal{V} (x)$, if there is no ambiguity).
+%\end{notation}
 
-If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
-$(\mathcal{X}_\tau,f)$ is chaotic too.
-\end{theorem}
 
-\begin{proof}
-Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
 
-Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
-\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
-can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
-\varnothing$. Consequently, $f$ is $\tau-$transitive.
+%\begin{theorem}
+%\label{Th:chaos et finesse}
+%Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
+%$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
+%both for $\tau$ and $\tau'$.
 
-Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
-all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
-periodic point for $f$ into $V$.
+%If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
+%$(\mathcal{X}_\tau,f)$ is chaotic too.
+%\end{theorem}
 
-Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
-of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
+%\begin{proof}
+%Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
 
-But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
-\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
-periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
-proven. 
-\end{proof}
+%Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
+%\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
+%can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
+%\varnothing$. Consequently, $f$ is $\tau-$transitive.
 
-\subsection{A given system can always be claimed as chaotic}
+%Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
+%all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
+%periodic point for $f$ into $V$.
 
-Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
-Then this function is chaotic (in a certain way):
+%Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
+%of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
 
-\begin{theorem}
-Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
-at least a fixed point.
-Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
-topology on $\X$.
-\end{theorem}
+%But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
+%\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
+%periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
+%proven. 
+%\end{proof}
 
+%\subsection{A given system can always be claimed as chaotic}
 
-\begin{proof}
-$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
-\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
-\varnothing$.
-As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
-an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
-instance, $n=0$ is appropriate.
+%Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
+%Then this function is chaotic (in a certain way):
 
-Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
-\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
-regular, and the result is established.
-\end{proof}
+%\begin{theorem}
+%Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
+%at least a fixed point.
+%Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
+%topology on $\X$.
+%\end{theorem}
 
 
+%\begin{proof}
+%$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
+%\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
+%\varnothing$.
+%As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
+%an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
+%instance, $n=0$ is appropriate.
 
+%Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
+%\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
+%regular, and the result is established.
+%\end{proof}
 
-\subsection{A given system can always be claimed as non-chaotic}
 
-\begin{theorem}
-Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
-If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
-(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
-\end{theorem}
 
-\begin{proof}
-Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
-f\right)$ is both transitive and regular.
 
-Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
-contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
-f\right)$ is regular. Then $x$ must be a periodic point of $f$.
+%\subsection{A given system can always be claimed as non-chaotic}
 
-Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
-because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
-\mathcal{X}, y \notin I_x$.
+%\begin{theorem}
+%Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
+%If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
+%(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
+%\end{theorem}
 
-As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
-sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
-\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
-\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
-\end{proof}
+%\begin{proof}
+%Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
+%f\right)$ is both transitive and regular.
 
+%Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
+%contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
+%f\right)$ is regular. Then $x$ must be a periodic point of $f$.
 
+%Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
+%because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
+%\mathcal{X}, y \notin I_x$.
+
+%As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
+%sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
+%\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
+%\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
+%\end{proof}
+
+
+
+
+
+
+%\section{Chaos on the order topology}
+%\label{sec: chaos order topology}
+%\subsection{The phase space is an interval of the real line}
+
+%\subsubsection{Toward a topological semiconjugacy}
+
+%In what follows, our intention is to establish, by using a topological
+%semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
+%iterations on a real interval. To do so, we must firstly introduce some
+%notations and terminologies. 
+
+%Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
+%1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
+%\times \B^\mathsf{N}$.
+
+
+%\begin{definition}
+%The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
+%0, 2^{10} \big[$ is defined by:
+%\begin{equation}
+% \begin{array}{cccl}
+%\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
+%\longrightarrow & \big[ 0, 2^{10} \big[ \\
+% & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
+%\varphi \left((S,E)\right)
+%\end{array}
+%\end{equation}
+%where $\varphi\left((S,E)\right)$ is the real number:
+%\begin{itemize}
+%\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
+%is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
+%\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
+%\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
+%\end{itemize}
+%\end{definition}
+
+
+
+%$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
+%real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
+%iterations $\Go$ on this real interval. To do so, two intermediate functions
+%over $\big[ 0, 2^{10} \big[$ must be introduced:
+
+
+%\begin{definition}
+%\label{def:e et s}
+%Let $x \in \big[ 0, 2^{10} \big[$ and:
+%\begin{itemize}
+%\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
+%$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
+%\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
+%decomposition of $x$ is the one that does not have an infinite number of 9: 
+%$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
+%\end{itemize}
+%$e$ and $s$ are thus defined as follows:
+%\begin{equation}
+%\begin{array}{cccl}
+%e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
+% & x & \longmapsto & (e_0, \hdots, e_9)
+%\end{array}
+%\end{equation}
+%and
+%\begin{equation}
+% \begin{array}{cccc}
+%s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
+%\rrbracket^{\mathds{N}} \\
+% & x & \longmapsto & (s^k)_{k \in \mathds{N}}
+%\end{array}
+%\end{equation}
+%\end{definition}
+
+%We are now able to define the function $g$, whose goal is to translate the
+%chaotic iterations $\Go$ on an interval of $\mathds{R}$.
+
+%\begin{definition}
+%$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
+%\begin{equation}
+%\begin{array}{cccc}
+%g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
+% & x & \longmapsto & g(x)
+%\end{array}
+%\end{equation}
+%where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
+%\begin{itemize}
+%\item its integral part has a binary decomposition equal to $e_0', \hdots,
+%e_9'$, with:
+% \begin{equation}
+%e_i' = \left\{
+%\begin{array}{ll}
+%e(x)_i & \textrm{ if } i \neq s^0\\
+%e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
+%\end{array}
+%\right.
+%\end{equation}
+%\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
+%\end{itemize}
+%\end{definition}
+
+%\bigskip
+
+
+%In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
+%\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
+%\begin{equation}
+%g(x) =
+%\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
+%\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
+%\end{equation}
+
+
+%\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
+
+%Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
+%usual one being the Euclidian distance recalled bellow:
+
+%\begin{notation}
+%\index{distance!euclidienne}
+%$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
+%$\Delta(x,y) = |y-x|^2$.
+%\end{notation}
+
+%\medskip
+
+%This Euclidian distance does not reproduce exactly the notion of proximity
+%induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
+%This is the reason why we have to introduce the following metric:
+
+
+
+%\begin{definition}
+%Let $x,y \in \big[ 0, 2^{10} \big[$.
+%$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
+%defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
+%where:
+%\begin{center}
+%$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
+%\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
+%\dfrac{|S^k-\check{S}^k|}{10^k}}$.
+%\end{center}
+%\end{definition}
+
+%\begin{proposition}
+%$D$ is a distance on $\big[ 0, 2^{10} \big[$.
+%\end{proposition}
+
+%\begin{proof}
+%The three axioms defining a distance must be checked.
+%\begin{itemize}
+%\item $D \geqslant 0$, because everything is positive in its definition. If
+%$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
+%(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
+%$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
+%the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
+%\item $D(x,y)=D(y,x)$.
+%\item Finally, the triangular inequality is obtained due to the fact that both
+%$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
+%\end{itemize}
+%\end{proof}
+
+
+%The convergence of sequences according to $D$ is not the same than the usual
+%convergence related to the Euclidian metric. For instance, if $x^n \to x$
+%according to $D$, then necessarily the integral part of each $x^n$ is equal to
+%the integral part of $x$ (at least after a given threshold), and the decimal
+%part of $x^n$ corresponds to the one of $x$ ``as far as required''.
+%To illustrate this fact, a comparison between $D$ and the Euclidian distance is
+%given Figure \ref{fig:comparaison de distances}. These illustrations show that
+%$D$ is richer and more refined than the Euclidian distance, and thus is more
+%precise.
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[Function $x \to dist(x;1,234) $ on the interval
+%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
+%  \subfigure[Function $x \to dist(x;3) $ on the interval
+%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
+%\end{center}
+%\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
+%\label{fig:comparaison de distances}
+%\end{figure}
+
+
+
+
+%\subsubsection{The semiconjugacy}
+
+%It is now possible to define a topological semiconjugacy between $\mathcal{X}$
+%and an interval of $\mathds{R}$:
+
+%\begin{theorem}
+%Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
+%$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
+%\begin{equation*}
+%\begin{CD}
+%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
+%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
+%    @V{\varphi}VV                    @VV{\varphi}V\\
+%\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
+%D~\right)
+%\end{CD}
+%\end{equation*}
+%\end{theorem}
+
+%\begin{proof}
+%$\varphi$ has been constructed in order to be continuous and onto.
+%\end{proof}
+
+%In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
+%\big[$.
+
+
+
+
+
+
+%\subsection{Study of the chaotic iterations described as a real function}
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
+%  \subfigure[ICs on the interval
+%$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
+%\end{center}
+%\caption{Representation of the chaotic iterations.}
+%\label{fig:ICs}
+%\end{figure}
+
+
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
+%\end{center}
+%\caption{ICs on small intervals.}
+%\label{fig:ICs2}
+%\end{figure}
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
+%  \subfigure[ICs on the interval 
+%$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
+%\end{center}
+%\caption{General aspect of the chaotic iterations.}
+%\label{fig:ICs3}
+%\end{figure}
+
+
+%We have written a Python program to represent the chaotic iterations with the
+%vectorial negation on the real line $\mathds{R}$. Various representations of
+%these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
+%It can be remarked that the function $g$ is a piecewise linear function: it is
+%linear on each interval having the form $\left[ \dfrac{n}{10},
+%\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
+%slope is equal to 10. Let us justify these claims:
+
+%\begin{proposition}
+%\label{Prop:derivabilite des ICs}
+%Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
+%$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
+%\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
+
+%Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
+%\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
+%$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
+%g'(x)=10$.
+%\end{proposition}
 
 
+%\begin{proof}
+%Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
+%0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
+%prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
+%and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
+%the images $g(x)$ of these points $x$:
+%\begin{itemize}
+%\item Have the same integral part, which is $e$, except probably the bit number
+%$s^0$. In other words, this integer has approximately the same binary
+%decomposition than $e$, the sole exception being the digit $s^0$ (this number is
+%then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
+%\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
+%\item A shift to the left has been applied to the decimal part $y$, losing by
+%doing so the common first digit $s^0$. In other words, $y$ has been mapped into
+%$10\times y - s^0$.
+%\end{itemize}
+%To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
+%multiplication by 10, and second, add the same constant to each term, which is
+%$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
+%\end{proof}
+
+%\begin{remark}
+%Finally, chaotic iterations are elements of the large family of functions that
+%are both chaotic and piecewise linear (like the tent map).
+%\end{remark}
+
+
+
+%\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
+
+%The two propositions bellow allow to compare our two distances on $\big[ 0,
+%2^\mathsf{N} \big[$:
+
+%\begin{proposition}
+%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
+%2^\mathsf{N} \big[, D~\right)$ is not continuous. 
+%\end{proposition}
+
+%\begin{proof}
+%The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
+%such that:
+%\begin{itemize}
+%\item $\Delta (x^n,2) \to 0.$
+%\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
+%\end{itemize}
+
+%The sequential characterization of the continuity concludes the demonstration.
+%\end{proof}
+
+
+
+%A contrario:
+
+%\begin{proposition}
+%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
+%2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
+%\end{proposition}
+
+%\begin{proof}
+%If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
+%threshold, because $D_e$ only returns integers. So, after this threshold, the
+%integral parts of all the $x^n$ are equal to the integral part of $x$. 
+
+%Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
+%\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
+%means that for all $k$, an index $N_k$ can be found such that, $\forall n
+%\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
+%digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
+%result.
+%\end{proof}
+
+%The conclusion of these propositions is that the proposed metric is more precise
+%than the Euclidian distance, that is:
 
+%\begin{corollary}
+%$D$ is finer than the Euclidian distance $\Delta$.
+%\end{corollary}
 
-\section{Chaos on the order topology}
-\label{sec: chaos order topology}
-\subsection{The phase space is an interval of the real line}
+%This corollary can be reformulated as follows:
+
+%\begin{itemize}
+%\item The topology produced by $\Delta$ is a subset of the topology produced by
+%$D$.
+%\item $D$ has more open sets than $\Delta$.
+%\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
+%to converge with the one inherited by $\Delta$, which is denoted here by
+%$\tau_\Delta$.
+%\end{itemize}
 
-\subsubsection{Toward a topological semiconjugacy}
 
-In what follows, our intention is to establish, by using a topological
-semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
-iterations on a real interval. To do so, we must firstly introduce some
-notations and terminologies. 
+%\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
+%\label{chpt:Chaos des itérations chaotiques sur R}
 
-Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
-1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
-\times \B^\mathsf{N}$.
 
 
-\begin{definition}
-The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
-0, 2^{10} \big[$ is defined by:
-\begin{equation}
- \begin{array}{cccl}
-\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
-\longrightarrow & \big[ 0, 2^{10} \big[ \\
- & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
-\varphi \left((S,E)\right)
-\end{array}
-\end{equation}
-where $\varphi\left((S,E)\right)$ is the real number:
-\begin{itemize}
-\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
-is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
-\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
-\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
-\end{itemize}
-\end{definition}
+%\subsubsection{Chaos according to Devaney}
 
+%We have recalled previously that the chaotic iterations $\left(\Go,
+%\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
+%can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
+%topology, because:
+%\begin{itemize}
+%\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
+%\big[_D\right)$ are semiconjugate by $\varphi$,
+%\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
+%according to Devaney, because the semiconjugacy preserve this character.
+%\item But the topology generated by $D$ is finer than the topology generated by
+%the Euclidian distance $\Delta$ -- which is the order topology.
+%\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
+%chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
+%topology on $\mathds{R}$.
+%\end{itemize}
 
+%This result can be formulated as follows.
 
-$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
-real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
-iterations $\Go$ on this real interval. To do so, two intermediate functions
-over $\big[ 0, 2^{10} \big[$ must be introduced:
+%\begin{theorem}
+%\label{th:IC et topologie de l'ordre}
+%The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
+%Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
+%order topology.
+%\end{theorem}
 
+%Indeed this result is weaker than the theorem establishing the chaos for the
+%finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
+%still remains important. Indeed, we have studied in our previous works a set
+%different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
+%in order to be as close as possible from the computer: the properties of
+%disorder proved theoretically will then be preserved when computing. However, we
+%could wonder whether this change does not lead to a disorder of a lower quality.
+%In other words, have we replaced a situation of a good disorder lost when
+%computing, to another situation of a disorder preserved but of bad quality.
+%Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
+% 
 
-\begin{definition}
-\label{def:e et s}
-Let $x \in \big[ 0, 2^{10} \big[$ and:
-\begin{itemize}
-\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
-$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
-\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
-decomposition of $x$ is the one that does not have an infinite number of 9: 
-$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
-\end{itemize}
-$e$ and $s$ are thus defined as follows:
-\begin{equation}
-\begin{array}{cccl}
-e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
- & x & \longmapsto & (e_0, \hdots, e_9)
-\end{array}
-\end{equation}
-and
-\begin{equation}
- \begin{array}{cccc}
-s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
-\rrbracket^{\mathds{N}} \\
- & x & \longmapsto & (s^k)_{k \in \mathds{N}}
-\end{array}
-\end{equation}
-\end{definition}
 
-We are now able to define the function $g$, whose goal is to translate the
-chaotic iterations $\Go$ on an interval of $\mathds{R}$.
 
-\begin{definition}
-$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
-\begin{equation}
-\begin{array}{cccc}
-g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
- & x & \longmapsto & g(x)
-\end{array}
-\end{equation}
-where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
-\begin{itemize}
-\item its integral part has a binary decomposition equal to $e_0', \hdots,
-e_9'$, with:
- \begin{equation}
-e_i' = \left\{
-\begin{array}{ll}
-e(x)_i & \textrm{ if } i \neq s^0\\
-e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
-\end{array}
-\right.
-\end{equation}
-\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
-\end{itemize}
-\end{definition}
 
-\bigskip
 
 
-In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
-\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
-\begin{equation}
-g(x) =
-\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
-\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
-\end{equation}
+\section{Security Analysis}
 
 
-\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
-
-Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
-usual one being the Euclidian distance recalled bellow:
-
-\begin{notation}
-\index{distance!euclidienne}
-$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
-$\Delta(x,y) = |y-x|^2$.
-\end{notation}
-
-\medskip
-
-This Euclidian distance does not reproduce exactly the notion of proximity
-induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
-This is the reason why we have to introduce the following metric:
 
 
+In this section the concatenation of two strings $u$ and $v$ is classically
+denoted by $uv$.
+In a cryptographic context, a pseudo-random generator is a deterministic
+algorithm $G$ transforming strings  into strings and such that, for any
+seed $w$ of length $N$, $G(w)$ (the output of $G$ on the input $w$) has size
+$\ell_G(N)$ with $\ell_G(N)>N$.
+The notion of {\it secure} PRNGs can now be defined as follows. 
 
 \begin{definition}
-Let $x,y \in \big[ 0, 2^{10} \big[$.
-$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
-defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
-where:
-\begin{center}
-$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
-\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
-\dfrac{|S^k-\check{S}^k|}{10^k}}$.
-\end{center}
+A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
+algorithm $D$, for any positive polynomial $p$, and for all sufficiently
+large $k$'s,
+$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)}=1]|< \frac{1}{p(N)},$$
+where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
+probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
+internal coin tosses of $D$. 
 \end{definition}
 
-\begin{proposition}
-$D$ is a distance on $\big[ 0, 2^{10} \big[$.
-\end{proposition}
-
-\begin{proof}
-The three axioms defining a distance must be checked.
-\begin{itemize}
-\item $D \geqslant 0$, because everything is positive in its definition. If
-$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
-(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
-$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
-the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
-\item $D(x,y)=D(y,x)$.
-\item Finally, the triangular inequality is obtained due to the fact that both
-$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
-\end{itemize}
-\end{proof}
-
-
-The convergence of sequences according to $D$ is not the same than the usual
-convergence related to the Euclidian metric. For instance, if $x^n \to x$
-according to $D$, then necessarily the integral part of each $x^n$ is equal to
-the integral part of $x$ (at least after a given threshold), and the decimal
-part of $x^n$ corresponds to the one of $x$ ``as far as required''.
-To illustrate this fact, a comparison between $D$ and the Euclidian distance is
-given Figure \ref{fig:comparaison de distances}. These illustrations show that
-$D$ is richer and more refined than the Euclidian distance, and thus is more
-precise.
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[Function $x \to dist(x;1,234) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
-  \subfigure[Function $x \to dist(x;3) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
-\end{center}
-\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
-\label{fig:comparaison de distances}
-\end{figure}
-
-
-
-
-\subsubsection{The semiconjugacy}
-
-It is now possible to define a topological semiconjugacy between $\mathcal{X}$
-and an interval of $\mathds{R}$:
-
-\begin{theorem}
-Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
-$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
-\begin{equation*}
-\begin{CD}
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
-    @V{\varphi}VV                    @VV{\varphi}V\\
-\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
-D~\right)
-\end{CD}
-\end{equation*}
-\end{theorem}
-
-\begin{proof}
-$\varphi$ has been constructed in order to be continuous and onto.
-\end{proof}
-
-In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
-\big[$.
-
-
-
-
-
-
-\subsection{Study of the chaotic iterations described as a real function}
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
-  \subfigure[ICs on the interval
-$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
-  \subfigure[ICs on the interval
-$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
-  \subfigure[ICs on the interval
-$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
-\end{center}
-\caption{Representation of the chaotic iterations.}
-\label{fig:ICs}
-\end{figure}
-
-
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
-  \subfigure[ICs on the interval
-$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
-\end{center}
-\caption{ICs on small intervals.}
-\label{fig:ICs2}
-\end{figure}
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
-  \subfigure[ICs on the interval 
-$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
-\end{center}
-\caption{General aspect of the chaotic iterations.}
-\label{fig:ICs3}
-\end{figure}
-
-
-We have written a Python program to represent the chaotic iterations with the
-vectorial negation on the real line $\mathds{R}$. Various representations of
-these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
-It can be remarked that the function $g$ is a piecewise linear function: it is
-linear on each interval having the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
-slope is equal to 10. Let us justify these claims:
+Intuitively, it means that there is no polynomial time algorithm that can
+distinguish a perfect uniform random generator from $G$ with a non
+negligible probability. The interested reader is referred
+to~\cite[chapter~3]{Goldreich} for more information. Note that it is
+quite easily possible to change the function $\ell$ into any polynomial
+function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
+
+The generation schema developed in (\ref{equation Oplus}) is based on a
+pseudo-random generator. Let $H$ be a cryptographic PRNG. We may assume,
+without loss of generality, that for any string $S_0$ of size $N$, the size
+of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
+Let $S_1,\ldots,S_k$ be the 
+strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
+the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
+is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
+$(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
+(x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$. 
+We claim now that if this PRNG is secure,
+then the new one is secure too.
 
 \begin{proposition}
-\label{Prop:derivabilite des ICs}
-Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
-$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
-\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
-
-Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
-$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
-g'(x)=10$.
+If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
+PRNG too.
 \end{proposition}
 
-
 \begin{proof}
-Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
-0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
-prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
-and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
-the images $g(x)$ of these points $x$:
-\begin{itemize}
-\item Have the same integral part, which is $e$, except probably the bit number
-$s^0$. In other words, this integer has approximately the same binary
-decomposition than $e$, the sole exception being the digit $s^0$ (this number is
-then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
-\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
-\item A shift to the left has been applied to the decimal part $y$, losing by
-doing so the common first digit $s^0$. In other words, $y$ has been mapped into
-$10\times y - s^0$.
-\end{itemize}
-To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
-multiplication by 10, and second, add the same constant to each term, which is
-$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
-\end{proof}
-
-\begin{remark}
-Finally, chaotic iterations are elements of the large family of functions that
-are both chaotic and piecewise linear (like the tent map).
-\end{remark}
-
-
-
-\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
-
-The two propositions bellow allow to compare our two distances on $\big[ 0,
-2^\mathsf{N} \big[$:
-
-\begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, D~\right)$ is not continuous. 
-\end{proposition}
-
-\begin{proof}
-The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
-such that:
-\begin{itemize}
-\item $\Delta (x^n,2) \to 0.$
-\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
-\end{itemize}
-
-The sequential characterization of the continuity concludes the demonstration.
-\end{proof}
-
-
-
-A contrario:
+The proposition is proved by contraposition. Assume that $X$ is not
+secure. By Definition, there exists a polynomial time probabilistic
+algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
+$N\geq \frac{k_0}{2}$ satisfying 
+$$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
+We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
+$kN$:
+\begin{enumerate}
+\item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
+\item Pick a string $y$ of size $N$ uniformly at random.
+\item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
+  \bigoplus_{i=1}^{i=k} w_i).$
+\item Return $D(z)$.
+\end{enumerate}
+
+
+Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
+from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
+(each $w_i$ has length $N$) to 
+$(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
+  \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
+\begin{equation}\label{PCH-1}
+D^\prime(w)=D(\varphi_y(w)),
+\end{equation}
+where $y$ is randomly generated. 
+Moreover, for each $y$, $\varphi_{y}$ is injective: if 
+$(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
+w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
+(y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
+$y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
+by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
+is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
+one has
+\begin{equation}\label{PCH-2}
+\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
+\end{equation}
 
-\begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
-\end{proposition}
+Now, using (\ref{PCH-1}) again, one has  for every $x$,
+\begin{equation}\label{PCH-3}
+D^\prime(H(x))=D(\varphi_y(H(x))),
+\end{equation}
+where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
+thus
+\begin{equation}\label{PCH-3}
+D^\prime(H(x))=D(yx),
+\end{equation}
+where $y$ is randomly generated. 
+It follows that 
 
-\begin{proof}
-If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
-threshold, because $D_e$ only returns integers. So, after this threshold, the
-integral parts of all the $x^n$ are equal to the integral part of $x$. 
-
-Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
-\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
-means that for all $k$, an index $N_k$ can be found such that, $\forall n
-\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
-digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
-result.
+\begin{equation}\label{PCH-4}
+\mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
+\end{equation}
+ From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
+there exist a polynomial time probabilistic
+algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
+$N\geq \frac{k_0}{2}$ satisfying 
+$$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
+proving that $H$ is not secure, a contradiction. 
 \end{proof}
 
-The conclusion of these propositions is that the proposed metric is more precise
-than the Euclidian distance, that is:
-
-\begin{corollary}
-$D$ is finer than the Euclidian distance $\Delta$.
-\end{corollary}
-
-This corollary can be reformulated as follows:
-
-\begin{itemize}
-\item The topology produced by $\Delta$ is a subset of the topology produced by
-$D$.
-\item $D$ has more open sets than $\Delta$.
-\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
-to converge with the one inherited by $\Delta$, which is denoted here by
-$\tau_\Delta$.
-\end{itemize}
-
-
-\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
-\label{chpt:Chaos des itérations chaotiques sur R}
 
 
 
-\subsubsection{Chaos according to Devaney}
-
-We have recalled previously that the chaotic iterations $\left(\Go,
-\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
-can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
-topology, because:
-\begin{itemize}
-\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
-\big[_D\right)$ are semiconjugate by $\varphi$,
-\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
-according to Devaney, because the semiconjugacy preserve this character.
-\item But the topology generated by $D$ is finer than the topology generated by
-the Euclidian distance $\Delta$ -- which is the order topology.
-\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
-chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
-topology on $\mathds{R}$.
-\end{itemize}
-
-This result can be formulated as follows.
-
-\begin{theorem}
-\label{th:IC et topologie de l'ordre}
-The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
-Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
-order topology.
-\end{theorem}
-
-Indeed this result is weaker than the theorem establishing the chaos for the
-finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
-still remains important. Indeed, we have studied in our previous works a set
-different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
-in order to be as close as possible from the computer: the properties of
-disorder proved theoretically will then be preserved when computing. However, we
-could wonder whether this change does not lead to a disorder of a lower quality.
-In other words, have we replaced a situation of a good disorder lost when
-computing, to another situation of a disorder preserved but of bad quality.
-Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
-
 
+\section{Conclusion}
 
 
+In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
+iterations. We have proven that these PRNGs are chaotic in the sense of Devenay. 
 
+An efficient implementation on GPU allows us to generate a huge number of pseudo
+random numbers  per second  (about 20Gsample/s). Our  PRNGs succeed to  pass the
+hardest batteries of test (TestU01).
 
+In future  work we plan  to extend our  work in order to  have cryptographically
+secure PRNGs because in some situations this property may be important.
 
-\section{Conclusion}
 \bibliographystyle{plain}
 \bibliography{mabase}
 \end{document}