]> AND Private Git Repository - prng_gpu.git/blobdiff - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Fin de mes reclectures
[prng_gpu.git] / prng_gpu.tex
index ff2d42a110bfe8a8b3b45363cbc0922d4b7f0eb4..f21f19e817e2590d6e96c48bf88b3257b4c37b8c 100644 (file)
@@ -50,8 +50,9 @@ implementation  for  GPU that successfully passes the   {\it BigCrush} tests, de
 battery of tests in TestU01.  Experiments show that this PRNG can generate
 about 20 billions of random numbers  per second on Tesla C1060 and NVidia GTX280
 cards.
-It is finally established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
+It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
 secure.
+A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is finally proposed.
 
 
 \end{abstract}
@@ -80,7 +81,7 @@ sequence.
 Finally, a small part of the community working in this domain focus on a
 third requirement, that is to define chaotic generators.
 The main idea is to take benefits from a chaotic dynamical system to obtain a
-generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
+generator that is unpredictable, disordered, sensible to its seed, or in other word chaotic.
 Their desire is to map a given chaotic dynamics into a sequence that seems random 
 and unassailable due to chaos.
 However, the chaotic maps used as a pattern are defined in the real line 
@@ -131,19 +132,21 @@ numbers inside a GPU when a scientific application runs in it. This remark
 motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
 Such device
 allows us to generated almost 20 billions of pseudorandom numbers per second.
-Last, but not least, we show that the proposed post-treatment preserves the
+Furthermore, we show that the proposed post-treatment preserves the
 cryptographical security of the inputted PRNG, when this last has such a 
 property.
+Last, but not least, we propose a rewritten of the Blum-Goldwasser asymmetric
+key encryption protocol by using the proposed method.
 
 The remainder of this paper  is organized as follows. In Section~\ref{section:related
   works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
   RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
   and on an iteration process called ``chaotic
 iterations'' on which the post-treatment is based. 
-Proofs of chaos are given in  Section~\ref{sec:pseudorandom}.
+The proposed PRNG and its proof of chaos are given in  Section~\ref{sec:pseudorandom}.
 Section~\ref{sec:efficient    PRNG}   presents   an   efficient
 implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient PRNG
-  gpu}   describes   the  GPU   implementation. 
+  gpu}   describes and evaluates theoretically  the  GPU   implementation. 
 Such generators are experimented in 
 Section~\ref{sec:experiments}.
 We show in Section~\ref{sec:security analysis} that, if the inputted
@@ -151,7 +154,8 @@ generator is cryptographically secure, then it is the case too for the
 generator provided by the post-treatment.
 Such a proof leads to the proposition of a cryptographically secure and
 chaotic generator on GPU based on the famous Blum Blum Shum
-in Section~\ref{sec:CSGPU}.
+in Section~\ref{sec:CSGPU}, and to an improvement of the
+Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}.
 This research work ends by a conclusion section, in which the contribution is
 summarized and intended future work is presented.
 
@@ -192,7 +196,7 @@ the  performance  of the  same  PRNGs on  different architectures are compared.
 FPGA appears as  the  fastest  and the most
 efficient architecture, providing the fastest number of generated pseudorandom numbers
 per joule. 
-However, we can notice that authors can ``only'' generate between 11 and 16GSamples/s
+However, we notice that authors can ``only'' generate between 11 and 16GSamples/s
 with a GTX 280  GPU, which should be compared with
 the results presented in this document.
 We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
@@ -414,8 +418,7 @@ The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
 path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
 strategy $s$ such that the parallel iteration of $G_f$ from the
 initial point $(s,x)$ reaches the point $x'$.
-
-We have finally proven in \cite{bcgr11:ip} that,
+We have then proven in \cite{bcgr11:ip} that,
 
 
 \begin{theorem}
@@ -424,14 +427,33 @@ Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic  (accord
 if and only if $\Gamma(f)$ is strongly connected.
 \end{theorem}
 
-This result of chaos has lead us to study the possibility to build a
+Finally, we have established in \cite{bcgr11:ip} that,
+\begin{theorem}
+  Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
+  iteration graph, $\check{M}$ its adjacency
+  matrix and $M$
+  a $n\times n$ matrix defined by 
+  $
+  M_{ij} = \frac{1}{n}\check{M}_{ij}$ %\textrm{ 
+  if $i \neq j$ and  
+  $M_{ii} = 1 - \frac{1}{n} \sum\limits_{j=1, j\neq i}^n \check{M}_{ij}$ otherwise.
+  
+  If $\Gamma(f)$ is strongly connected, then 
+  the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
+  a law that tends to the uniform distribution 
+  if and only if $M$ is a double stochastic matrix.
+\end{theorem} 
+
+
+These results of chaos and uniform distribution have lead us to study the possibility to build a
 pseudorandom number generator (PRNG) based on the chaotic iterations. 
 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
 \times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
-during implementations (due to the discrete nature of $f$). It is as if
+during implementations (due to the discrete nature of $f$). Indeed, it is as if
 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
+Let us finally remark that the vectorial negation satisfies the hypotheses of the two theorems above.
 
 \section{Application to Pseudorandomness}
 \label{sec:pseudorandom}
@@ -494,19 +516,7 @@ with a bit shifted version of it. This PRNG, which has a period of
 $2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used
 in our PRNG to compute the strategy length and the strategy elements.
 
-
-We have proven in \cite{bcgr11:ip} that,
-\begin{theorem}
-  Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
-  iteration graph, $\check{M}$ its adjacency
-  matrix and $M$ a $n\times n$ matrix defined as in the previous lemma.
-  If $\Gamma(f)$ is strongly connected, then 
-  the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows 
-  a law that tends to the uniform distribution 
-  if and only if $M$ is a double stochastic matrix.
-\end{theorem} 
-
-This former generator as successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07}.
+This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones.
 
 \subsection{Improving the Speed of the Former Generator}
 
@@ -890,12 +900,12 @@ simultaneously. In general,  the larger the number of  threads is, the
 more local  memory is  used, and the  less branching  instructions are
 used  (if,  while,  ...),  the  better the  performances  on  GPU  is.
 Obviously, having these requirements in  mind, it is possible to build
-a   program    similar   to    the   one   presented    in   Algorithm
+a   program    similar   to    the   one   presented    in  Listing 
 \ref{algo:seqCIPRNG}, which computes  pseudorandom numbers on GPU.  To
 do  so,  we  must   firstly  recall  that  in  the  CUDA~\cite{Nvid10}
 environment,    threads    have     a    local    identifier    called
 \texttt{ThreadIdx},  which   is  relative  to   the  block  containing
-them. With  CUDA parts of  the code which  are executed by the  GPU are
+them. Furthermore, in  CUDA, parts of  the code that are executed by the  GPU are
 called {\it kernels}.
 
 
@@ -1032,8 +1042,7 @@ last $t$ respects the requirement. Furthermore, it is possible to
 prove by an immediate mathematical induction that, as the initial $x$
 is uniformly distributed (it is provided by a cryptographically secure PRNG),
 the two other stored values shmem[o1] and shmem[o2] are uniformly distributed too,
-(this can be stated by an immediate mathematical
-induction), and thus the next $x$ is finally uniformly distributed.
+(this is the induction hypothesis), and thus the next $x$ is finally uniformly distributed.
 
 Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
 chaotic iterations presented previously, and for this reason, it satisfies the 
@@ -1051,7 +1060,7 @@ All the
 cards have 240 cores.
 
 In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  quantity of  pseudorandom numbers
-generated per second with various xor-like based PRNG. In this figure, the optimized
+generated per second with various xor-like based PRNGs. In this figure, the optimized
 versions use the {\it xor64} described in~\cite{Marsaglia2003}, whereas the naive versions
 embed  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIPRNG}.   In
 order to obtain the optimal performances, the storage of pseudorandom numbers
@@ -1304,9 +1313,9 @@ tab: 2D Arrays containing 16 combinations (in first dimension)  of size combinat
     t|=BBS1(bbs1)\&7\;
      t<<=BBS7(bbs7)\&3\;
     t|=BBS2(bbs2)\&7\;
-    t=t $\wedge$ shmem[o1] $\wedge$ shmem[o2]\;
+    t=t \^{ } shmem[o1] \^{ }    shmem[o2]\;
     shared\_mem[threadId]=t\;
-    x = x $\wedge$ t\;
+    x = x \^{ }    t\;
 
     store the new PRNG in NewNb[NumThreads*threadId+i]\;
   }
@@ -1330,7 +1339,7 @@ positions of $t$.
 Let us remark that to initialize $t$ is not a necessity as we
 fill it 4 bits by 4 bits, until having obtained 32 bits.
 The two last new shifts are realized in order to enlarge
-the small periods of the BBS used here, to introduce a variability.
+the small periods of the BBS used here, to introduce a kind of variability.
 In these operations, we make twice a left shift of $t$ of \emph{at most}
 3 bits and we put \emph{exactly} the 3 last bits from a BBS into 
 the 3 last bits of $t$, leading possibly to a loss of a few 
@@ -1338,7 +1347,7 @@ bits of $t$.
 
 It should  be noticed that this generator has another time the form $x^{n+1} = x^n \oplus S^n$,
 where $S^n$ is referred in this algorithm as $t$: each iteration of this
-PRNG ends with $x = x \wedge t;$. This $S^n$ is only constituted
+PRNG ends with $x = x \wedge t$. This $S^n$ is only constituted
 by secure bits produced by the BBS generator, and thus, due to
 Proposition~\ref{cryptopreuve}, the resulted PRNG is cryptographically
 secure
@@ -1346,7 +1355,7 @@ secure
 
 
 \subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
-
+\label{Blum-Goldwasser}
 We finish this research work by giving some thoughts about the use of
 the proposed PRNG in an asymmetric cryptosystem.
 This first approach will be further investigated in a future work.
@@ -1374,7 +1383,7 @@ Suppose Bob wishes to send a string $m=(m_0, \dots, m_{L-1})$ of $L$ bits to Ali
 \item $i=0$.
 \item While $i \leqslant L-1$:
 \begin{itemize}
-\item Set $b_i$ equal to the least-significant\footnote{BBS can securely output up to $\mathsf{N} = \lfloor log(log(N)) \rfloor$ of the least-significant bits of $x_i$ during each round.} bit of $x_i$,
+\item Set $b_i$ equal to the least-significant\footnote{As signaled previously, BBS can securely output up to $\mathsf{N} = \lfloor log(log(N)) \rfloor$ of the least-significant bits of $x_i$ during each round.} bit of $x_i$,
 \item $i=i+1$,
 \item $x_i = (x_{i-1})^2~mod~N.$
 \end{itemize}
@@ -1415,16 +1424,25 @@ the inheritance of all the properties presented in this paper.
 \section{Conclusion}
 
 
-In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
-iterations. We have proven that these PRNGs are chaotic in the sense of Devaney.
-We also propose a PRNG cryptographically secure and its implementation on GPU.
-
-An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
-generate   a  huge   number   of  pseudorandom   numbers   per  second   (about
-20Gsamples/s). This PRNG succeeds to pass the hardest batteries of TestU01.
-
-In future  work we plan to  extend this work  for parallel PRNG for  clusters or
-grid computing.
+In  this  paper, a formerly proposed PRNG based on chaotic iterations
+has been generalized to improve its speed. It has been proven to be
+chaotic according to Devaney.
+Efficient implementations on  GPU using xor-like  PRNGs as input generators
+shown that a very large quantity of pseudorandom numbers can be generated per second (about
+20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01,
+namely the BigCrush.
+Furthermore, we have shown that when the inputted generator is cryptographically
+secure, then it is the case too for the PRNG we propose, thus leading to
+the possibility to develop fast and secure PRNGs using the GPU architecture.
+Thoughts about an improvement of the Blum-Goldwasser cryptosystem, using the 
+proposed method, has been finally proposed.
+
+In future  work we plan to extend these researches, building a parallel PRNG for  clusters or
+grid computing. Topological properties of the various proposed generators will be investigated,
+and the use of other categories of PRNGs as input will be studied too. The improvement
+of Blum-Goldwasser will be deepened. Finally, we
+will try to enlarge the quantity of pseudorandom numbers generated per second either
+in a simulation context or in a cryptographic one.