]> AND Private Git Repository - prng_gpu.git/blobdiff - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Fin de la retouche de la réponse
[prng_gpu.git] / prng_gpu.tex
index 215675289e7c624b1f4e6b1dba8b717b424f8bd1..38431e52570a1dc0a511a0a9c24cb7a3f535ea99 100644 (file)
@@ -172,12 +172,12 @@ key encryption protocol by using the proposed method.
 
 \PCH{
 {\bf Main contributions.} In this paper a new PRNG using chaotic iteration
-is defined. From a theoretical point of view, it is proved that it has fine
+is defined. From a theoretical point of view, it is proven that it has fine
 topological chaotic properties and that it is cryptographically secured (when
 the based PRNG is also cryptographically secured). From a practical point of
 view, experiments point out a very good statistical behavior. Optimized
 original implementation of this PRNG are also proposed and experimented.
-Pseudo-random numbers are generated at a rate of 20GSamples/s which is faster
+Pseudorandom numbers are generated at a rate of 20GSamples/s, which is faster
 than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better
 statistical behavior). Experiments are also provided using BBS as the based
 random generator. The generation speed is significantly weaker but, as far
@@ -1698,7 +1698,7 @@ PRNG too.
 \end{proposition}
 
 \begin{proof}
-The proposition is proved by contraposition. Assume that $X$ is not
+The proposition is proven by contraposition. Assume that $X$ is not
 secure. By Definition, there exists a polynomial time probabilistic
 algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
 $N\geq \frac{k_0}{2}$ satisfying