+\section{Basic Recalls}
+\label{section:BASIC RECALLS}
+This section is devoted to basic definitions and terminologies in the fields of
+topological chaos and chaotic iterations.
+\subsection{Devaney's Chaotic Dynamical Systems}
+
+In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$
+denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$
+is for the $k^{th}$ composition of a function $f$. Finally, the following
+notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$.
+
+
+Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f :
+\mathcal{X} \rightarrow \mathcal{X}$.
+
+\begin{definition}
+$f$ is said to be \emph{topologically transitive} if, for any pair of open sets
+$U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq
+\varnothing$.
+\end{definition}
+
+\begin{definition}
+An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$
+if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$
+\end{definition}
+
+\begin{definition}
+$f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic
+points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$,
+any neighborhood of $x$ contains at least one periodic point (without
+necessarily the same period).
+\end{definition}
+
+
+\begin{definition}[Devaney's formulation of chaos~\cite{Devaney}]
+$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and
+topologically transitive.
+\end{definition}
+
+The chaos property is strongly linked to the notion of ``sensitivity'', defined
+on a metric space $(\mathcal{X},d)$ by:
+
+\begin{definition}
+\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions}
+if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any
+neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that
+$d\left(f^{n}(x), f^{n}(y)\right) >\delta $.
+
+$\delta$ is called the \emph{constant of sensitivity} of $f$.
+\end{definition}
+
+Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is
+chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of
+sensitive dependence on initial conditions (this property was formerly an
+element of the definition of chaos). To sum up, quoting Devaney
+in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the
+sensitive dependence on initial conditions. It cannot be broken down or
+simplified into two subsystems which do not interact because of topological
+transitivity. And in the midst of this random behavior, we nevertheless have an
+element of regularity''. Fundamentally different behaviors are consequently
+possible and occur in an unpredictable way.
+
+
+
+\subsection{Chaotic Iterations}
+\label{sec:chaotic iterations}
+
+
+Let us consider a \emph{system} with a finite number $\mathsf{N} \in
+\mathds{N}^*$ of elements (or \emph{cells}), so that each cell has a
+Boolean \emph{state}. Having $\mathsf{N}$ Boolean values for these
+ cells leads to the definition of a particular \emph{state of the
+system}. A sequence which elements belong to $\llbracket 1;\mathsf{N}
+\rrbracket $ is called a \emph{strategy}. The set of all strategies is
+denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$
+
+\begin{definition}
+\label{Def:chaotic iterations}
+The set $\mathds{B}$ denoting $\{0,1\}$, let
+$f:\mathds{B}^{\mathsf{N}}\longrightarrow \mathds{B}^{\mathsf{N}}$ be
+a function and $S\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ be a ``strategy''. The so-called
+\emph{chaotic iterations} are defined by $x^0\in
+\mathds{B}^{\mathsf{N}}$ and
+\begin{equation}
+\forall n\in \mathds{N}^{\ast }, \forall i\in
+\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
+\begin{array}{ll}
+ x_i^{n-1} & \text{ if }S^n\neq i \\
+ \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i.
+\end{array}\right.
+\end{equation}
+\end{definition}
+
+In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is
+\textquotedblleft iterated\textquotedblright . Note that in a more
+general formulation, $S^n$ can be a subset of components and
+$\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by
+$\left(f(x^{k})\right)_{S^{n}}$, where $k<n$, describing for example,
+delays transmission~\cite{Robert1986,guyeux10}. Finally, let us remark that
+the term ``chaotic'', in the name of these iterations, has \emph{a
+priori} no link with the mathematical theory of chaos, presented above.
+
+
+Let us now recall how to define a suitable metric space where chaotic iterations
+are continuous. For further explanations, see, e.g., \cite{guyeux10}.
+
+Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
+(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function:
+\begin{equation}
+\begin{array}{lrll}
+F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} &
+\longrightarrow & \mathds{B}^{\mathsf{N}} \\
+& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta
+(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
+\end{array}%
+\end{equation}%
+\noindent where + and . are the Boolean addition and product operations.
+Consider the phase space:
+\begin{equation}
+\mathcal{X} = \llbracket 1 ; \mathsf{N} \rrbracket^\mathds{N} \times
+\mathds{B}^\mathsf{N},
+\end{equation}
+\noindent and the map defined on $\mathcal{X}$:
+\begin{equation}
+G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
+\end{equation}
+\noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
+(S^{n})_{n\in \mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow (S^{n+1})_{n\in
+\mathds{N}}\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ and $i$ is the \emph{initial function}
+$i:(S^{n})_{n\in \mathds{N}} \in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}\longrightarrow S^{0}\in \llbracket
+1;\mathsf{N}\rrbracket$. Then the chaotic iterations proposed in
+Definition \ref{Def:chaotic iterations} can be described by the following iterations:
+\begin{equation}
+\left\{
+\begin{array}{l}
+X^0 \in \mathcal{X} \\
+X^{k+1}=G_{f}(X^k).%
+\end{array}%
+\right.
+\end{equation}%
+
+With this formulation, a shift function appears as a component of chaotic
+iterations. The shift function is a famous example of a chaotic
+map~\cite{Devaney} but its presence is not sufficient enough to claim $G_f$ as
+chaotic.
+To study this claim, a new distance between two points $X = (S,E), Y =
+(\check{S},\check{E})\in
+\mathcal{X}$ has been introduced in \cite{guyeux10} as follows:
+\begin{equation}
+d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
+\end{equation}
+\noindent where
+\begin{equation}
+\left\{
+\begin{array}{lll}
+\displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
+}\delta (E_{k},\check{E}_{k})}, \\
+\displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
+\sum_{k=1}^{\infty }\dfrac{|S^k-\check{S}^k|}{10^{k}}}.%
+\end{array}%
+\right.
+\end{equation}
+
+
+This new distance has been introduced to satisfy the following requirements.
+\begin{itemize}
+\item When the number of different cells between two systems is increasing, then
+their distance should increase too.
+\item In addition, if two systems present the same cells and their respective
+strategies start with the same terms, then the distance between these two points
+must be small because the evolution of the two systems will be the same for a
+while. Indeed, the two dynamical systems start with the same initial condition,
+use the same update function, and as strategies are the same for a while, then
+components that are updated are the same too.
+\end{itemize}
+The distance presented above follows these recommendations. Indeed, if the floor
+value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
+differ in $n$ cells ($d_e$ is indeed the Hamming distance). In addition, $d(X,Y) - \lfloor d(X,Y) \rfloor $ is a
+measure of the differences between strategies $S$ and $\check{S}$. More
+precisely, this floating part is less than $10^{-k}$ if and only if the first
+$k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
+nonzero, then the $k^{th}$ terms of the two strategies are different.
+The impact of this choice for a distance will be investigate at the end of the document.
+
+Finally, it has been established in \cite{guyeux10} that,
+
+\begin{proposition}
+Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. Then $G_{f}$ is continuous in
+the metric space $(\mathcal{X},d)$.
+\end{proposition}
+
+The chaotic property of $G_f$ has been firstly established for the vectorial
+Boolean negation $f(x_1,\hdots, x_\mathsf{N}) = (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
+introduced the notion of asynchronous iteration graph recalled bellow.
+
+Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
+{\emph{asynchronous iteration graph}} associated with $f$ is the
+directed graph $\Gamma(f)$ defined by: the set of vertices is
+$\mathds{B}^\mathsf{N}$; for all $x\in\mathds{B}^\mathsf{N}$ and
+$i\in \llbracket1;\mathsf{N}\rrbracket$,
+the graph $\Gamma(f)$ contains an arc from $x$ to $F_f(i,x)$.
+The relation between $\Gamma(f)$ and $G_f$ is clear: there exists a
+path from $x$ to $x'$ in $\Gamma(f)$ if and only if there exists a
+strategy $s$ such that the parallel iteration of $G_f$ from the
+initial point $(s,x)$ reaches the point $x'$.
+
+We have finally proven in \cite{bcgr11:ip} that,
+
+
+\begin{theorem}
+\label{Th:Caractérisation des IC chaotiques}
+Let $f:\mathds{B}^\mathsf{N}\to\mathds{B}^\mathsf{N}$. $G_f$ is chaotic (according to Devaney)
+if and only if $\Gamma(f)$ is strongly connected.
+\end{theorem}
+
+This result of chaos has lead us to study the possibility to build a
+pseudo-random number generator (PRNG) based on the chaotic iterations.
+As $G_f$, defined on the domain $\llbracket 1 ; \mathsf{N} \rrbracket^{\mathds{N}}
+\times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
+\rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
+during implementations (due to the discrete nature of $f$). It is as if
+$\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ; \mathsf{N}
+\rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance).
+
+\section{Application to Pseudo-Randomness}
+
+\subsection{A First Pseudo-Random Number Generator}
+
+We have proposed in~\cite{bgw09:ip} a new family of generators that receives
+two PRNGs as inputs. These two generators are mixed with chaotic iterations,
+leading thus to a new PRNG that improves the statistical properties of each
+generator taken alone. Furthermore, our generator
+possesses various chaos properties that none of the generators used as input
+present.
+
+\begin{algorithm}[h!]
+%\begin{scriptsize}
+\KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
+($n$ bits)}
+\KwOut{a configuration $x$ ($n$ bits)}
+$x\leftarrow x^0$\;
+$k\leftarrow b + \textit{XORshift}(b)$\;
+\For{$i=0,\dots,k$}
+{
+$s\leftarrow{\textit{XORshift}(n)}$\;
+$x\leftarrow{F_f(s,x)}$\;
+}
+return $x$\;
+%\end{scriptsize}
+\caption{PRNG with chaotic functions}
+\label{CI Algorithm}
+\end{algorithm}
+
+\begin{algorithm}[h!]
+\KwIn{the internal configuration $z$ (a 32-bit word)}
+\KwOut{$y$ (a 32-bit word)}
+$z\leftarrow{z\oplus{(z\ll13)}}$\;
+$z\leftarrow{z\oplus{(z\gg17)}}$\;
+$z\leftarrow{z\oplus{(z\ll5)}}$\;
+$y\leftarrow{z}$\;
+return $y$\;
+\medskip
+\caption{An arbitrary round of \textit{XORshift} algorithm}
+\label{XORshift}
+\end{algorithm}
+
+
+
+
+
+This generator is synthesized in Algorithm~\ref{CI Algorithm}.
+It takes as input: a function $f$;
+an integer $b$, ensuring that the number of executed iterations is at least $b$
+and at most $2b+1$; and an initial configuration $x^0$.
+It returns the new generated configuration $x$. Internally, it embeds two
+\textit{XORshift}$(k)$ PRNGs \cite{Marsaglia2003} that returns integers
+uniformly distributed
+into $\llbracket 1 ; k \rrbracket$.
+\textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
+which repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
+with a bit shifted version of it. This PRNG, which has a period of
+$2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used
+in our PRNG to compute the strategy length and the strategy elements.
+
+
+We have proven in \cite{bcgr11:ip} that,
+\begin{theorem}
+ Let $f: \mathds{B}^{n} \rightarrow \mathds{B}^{n}$, $\Gamma(f)$ its
+ iteration graph, $\check{M}$ its adjacency
+ matrix and $M$ a $n\times n$ matrix defined as in the previous lemma.
+ If $\Gamma(f)$ is strongly connected, then
+ the output of the PRNG detailed in Algorithm~\ref{CI Algorithm} follows
+ a law that tends to the uniform distribution
+ if and only if $M$ is a double stochastic matrix.
+\end{theorem}
+
+This former generator as successively passed various batteries of statistical tests, as the NIST tests~\cite{bcgr11:ip}.
+
+\subsection{Improving the Speed of the Former Generator}
+
+Instead of updating only one cell at each iteration, we can try to choose a
+subset of components and to update them together. Such an attempt leads
+to a kind of merger of the two sequences used in Algorithm
+\ref{CI Algorithm}. When the updating function is the vectorial negation,
+this algorithm can be rewritten as follows:
+
+\begin{equation}
+\left\{
+\begin{array}{l}
+x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\
+\forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
+\end{array}
+\right.
+\label{equation Oplus}
+\end{equation}
+where $\oplus$ is for the bitwise exclusive or between two integers.
+This rewritten can be understood as follows. The $n-$th term $S^n$ of the
+sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
+the list of cells to update in the state $x^n$ of the system (represented
+as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th
+component of this state (a binary digit) changes if and only if the $k-$th
+digit in the binary decomposition of $S^n$ is 1.
+
+The single basic component presented in Eq.~\ref{equation Oplus} is of
+ordinary use as a good elementary brick in various PRNGs. It corresponds
+to the following discrete dynamical system in chaotic iterations:
+
+\begin{equation}
+\forall n\in \mathds{N}^{\ast }, \forall i\in
+\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
+\begin{array}{ll}
+ x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\
+ \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
+\end{array}\right.
+\end{equation}
+where $f$ is the vectorial negation and $\forall n \in \mathds{N}$,
+$\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
+$k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
+decomposition of $S^n$ is 1. Such chaotic iterations are more general
+than the ones presented in Definition \ref{Def:chaotic iterations} for
+the fact that, instead of updating only one term at each iteration,
+we select a subset of components to change.
+
+
+Obviously, replacing Algorithm~\ref{CI Algorithm} by
+Equation~\ref{equation Oplus}, possible when the iteration function is
+the vectorial negation, leads to a speed improvement. However, proofs
+of chaos obtained in~\cite{bg10:ij} have been established
+only for chaotic iterations of the form presented in Definition
+\ref{Def:chaotic iterations}. The question is now to determine whether the
+use of more general chaotic iterations to generate pseudo-random numbers
+faster, does not deflate their topological chaos properties.
+
+\subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
+
+Let us consider the discrete dynamical systems in chaotic iterations having
+the general form:
+
+\begin{equation}
+\forall n\in \mathds{N}^{\ast }, \forall i\in
+\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
+\begin{array}{ll}
+ x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\
+ \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
+\end{array}\right.
+\label{general CIs}
+\end{equation}
+
+In other words, at the $n^{th}$ iteration, only the cells whose id is
+contained into the set $S^{n}$ are iterated.
+
+Let us now rewrite these general chaotic iterations as usual discrete dynamical
+system of the form $X^{n+1}=f(X^n)$ on an ad hoc metric space. Such a formulation
+is required in order to study the topological behavior of the system.
+
+Let us introduce the following function:
+\begin{equation}
+\begin{array}{cccc}
+ \chi: & \llbracket 1; \mathsf{N} \rrbracket \times \mathcal{P}\left(\llbracket 1; \mathsf{N} \rrbracket\right) & \longrightarrow & \mathds{B}\\
+ & (i,X) & \longmapsto & \left\{ \begin{array}{ll} 0 & \textrm{if }i \notin X, \\ 1 & \textrm{if }i \in X, \end{array}\right.
+\end{array}
+\end{equation}
+where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
+
+Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
+\begin{equation}
+\begin{array}{lrll}
+F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} &
+\longrightarrow & \mathds{B}^{\mathsf{N}} \\
+& (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi
+(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
+\end{array}%
+\end{equation}%
+where + and . are the Boolean addition and product operations, and $\overline{x}$
+is the negation of the Boolean $x$.
+Consider the phase space:
+\begin{equation}
+\mathcal{X} = \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N} \times
+\mathds{B}^\mathsf{N},
+\end{equation}
+\noindent and the map defined on $\mathcal{X}$:
+\begin{equation}
+G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
+\end{equation}
+\noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
+(S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
+\mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}$ and $i$ is the \emph{initial function}
+$i:(S^{n})_{n\in \mathds{N}} \in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow S^{0}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)$.
+Then the general chaotic iterations defined in Equation \ref{general CIs} can
+be described by the following discrete dynamical system:
+\begin{equation}
+\left\{
+\begin{array}{l}
+X^0 \in \mathcal{X} \\
+X^{k+1}=G_{f}(X^k).%
+\end{array}%
+\right.
+\end{equation}%
+
+Another time, a shift function appears as a component of these general chaotic
+iterations.
+
+To study the Devaney's chaos property, a distance between two points
+$X = (S,E), Y = (\check{S},\check{E})$ of $\mathcal{X}$ must be defined.
+Let us introduce:
+\begin{equation}
+d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
+\label{nouveau d}
+\end{equation}
+\noindent where
+\begin{equation}
+\left\{
+\begin{array}{lll}
+\displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
+}\delta (E_{k},\check{E}_{k})}\textrm{ is another time the Hamming distance}, \\
+\displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
+\sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
+\end{array}%
+\right.
+\end{equation}
+where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
+$A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.