-\documentclass{article}
+%\documentclass{article}
+\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{fullpage}
\usepackage[ruled,vlined]{algorithm2e}
\usepackage{listings}
\usepackage[standard]{ntheorem}
+\usepackage{algorithmic}
+\usepackage{slashbox}
% Pour mathds : les ensembles IR, IN, etc.
\usepackage{dsfont}
\begin{document}
\author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe
-Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
+Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}}
-\maketitle
+\IEEEcompsoctitleabstractindextext{
\begin{abstract}
In this paper we present a new pseudorandom number generator (PRNG) on
graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It
is firstly proven to be chaotic according to the Devaney's formulation. We thus propose an efficient
implementation for GPU that successfully passes the {\it BigCrush} tests, deemed to be the hardest
battery of tests in TestU01. Experiments show that this PRNG can generate
-about 20 billions of random numbers per second on Tesla C1060 and NVidia GTX280
+about 20 billion of random numbers per second on Tesla C1060 and NVidia GTX280
cards.
It is then established that, under reasonable assumptions, the proposed PRNG can be cryptographically
secure.
\end{abstract}
+}
+
+\maketitle
+
+\IEEEdisplaynotcompsoctitleabstractindextext
+\IEEEpeerreviewmaketitle
+
\section{Introduction}
-Randomness is of importance in many fields as scientific simulations or cryptography.
+Randomness is of importance in many fields such as scientific simulations or cryptography.
``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
called a pseudorandom number generator (PRNG), or by a physical non-deterministic
process having all the characteristics of a random noise, called a truly random number
In this paper, we focus on reproducible generators, useful for instance in
Monte-Carlo based simulators or in several cryptographic schemes.
These domains need PRNGs that are statistically irreproachable.
-On some fields as in numerical simulations, speed is a strong requirement
+In some fields such as in numerical simulations, speed is a strong requirement
that is usually attained by using parallel architectures. In that case,
-a recurrent problem is that a deflate of the statistical qualities is often
+a recurrent problem is that a deflation of the statistical qualities is often
reported, when the parallelization of a good PRNG is realized.
This is why ad-hoc PRNGs for each possible architecture must be found to
achieve both speed and randomness.
On the other side, speed is not the main requirement in cryptography: the great
-need is to define \emph{secure} generators being able to withstand malicious
+need is to define \emph{secure} generators able to withstand malicious
attacks. Roughly speaking, an attacker should not be able in practice to make
the distinction between numbers obtained with the secure generator and a true random
sequence.
-Finally, a small part of the community working in this domain focus on a
+Finally, a small part of the community working in this domain focuses on a
third requirement, that is to define chaotic generators.
The main idea is to take benefits from a chaotic dynamical system to obtain a
generator that is unpredictable, disordered, sensible to its seed, or in other word chaotic.
The authors' opinion is that topological properties of disorder, as they are
properly defined in the mathematical theory of chaos, can reinforce the quality
of a PRNG. But they are not substitutable for security or statistical perfection.
-Indeed, to the authors' point of view, such properties can be useful in the two following situations. On the
+Indeed, to the authors' mind, such properties can be useful in the two following situations. On the
one hand, a post-treatment based on a chaotic dynamical system can be applied
to a PRNG statistically deflective, in order to improve its statistical
properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
statistical perfection refers to the ability to pass the whole
{\it BigCrush} battery of tests, which is widely considered as the most
stringent statistical evaluation of a sequence claimed as random.
-This battery can be found into the well-known TestU01 package~\cite{LEcuyerS07}.
+This battery can be found in the well-known TestU01 package~\cite{LEcuyerS07}.
Chaos, for its part, refers to the well-established definition of a
chaotic dynamical system proposed by Devaney~\cite{Devaney}.
numbers inside a GPU when a scientific application runs in it. This remark
motivates our proposal of a chaotic and statistically perfect PRNG for GPU.
Such device
-allows us to generated almost 20 billions of pseudorandom numbers per second.
+allows us to generate almost 20 billion of pseudorandom numbers per second.
Furthermore, we show that the proposed post-treatment preserves the
cryptographical security of the inputted PRNG, when this last has such a
property.
-Last, but not least, we propose a rewritten of the Blum-Goldwasser asymmetric
+Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric
key encryption protocol by using the proposed method.
The remainder of this paper is organized as follows. In Section~\ref{section:related
generator is cryptographically secure, then it is the case too for the
generator provided by the post-treatment.
Such a proof leads to the proposition of a cryptographically secure and
-chaotic generator on GPU based on the famous Blum Blum Shum
+chaotic generator on GPU based on the famous Blum Blum Shub
in Section~\ref{sec:CSGPU}, and to an improvement of the
Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}.
This research work ends by a conclusion section, in which the contribution is
\section{Related works on GPU based PRNGs}
\label{section:related works}
-Numerous research works on defining GPU based PRNGs have yet been proposed in the
-literature, so that completeness is impossible.
+Numerous research works on defining GPU based PRNGs have already been proposed in the
+literature, so that exhaustivity is impossible.
This is why authors of this document only give reference to the most significant attempts
in this domain, from their subjective point of view.
The quantity of pseudorandom numbers generated per second is mentioned here
In \cite{ZRKB10}, the authors propose different versions of efficient GPU PRNGs
based on Lagged Fibonacci or Hybrid Taus. They have used these
PRNGs for Langevin simulations of biomolecules fully implemented on
-GPU. Performance of the GPU versions are far better than those obtained with a
+GPU. Performances of the GPU versions are far better than those obtained with a
CPU, and these PRNGs succeed to pass the {\it BigCrush} battery of TestU01.
However the evaluations of the proposed PRNGs are only statistical ones.
with a GTX 280 GPU, which should be compared with
the results presented in this document.
We can remark too that the PRNGs proposed in~\cite{conf/fpga/ThomasHL09} are only
-able to pass the {\it Crush} battery, which is very easy compared to the {\it Big Crush} one.
+able to pass the {\it Crush} battery, which is far easier than the {\it Big Crush} one.
Lastly, Cuda has developed a library for the generation of pseudorandom numbers called
Curand~\cite{curand11}. Several PRNGs are implemented, among
But their PRNGs cannot pass the whole TestU01 battery (only one test is failed).
\newline
\newline
-We can finally remark that, to the best of our knowledge, no GPU implementation have been proven to be chaotic, and the cryptographically secure property is surprisingly never regarded.
+We can finally remark that, to the best of our knowledge, no GPU implementation has been proven to be chaotic, and the cryptographically secure property has surprisingly never been considered.
\section{Basic Recalls}
\label{section:BASIC RECALLS}
are continuous. For further explanations, see, e.g., \cite{guyeux10}.
Let $\delta $ be the \emph{discrete Boolean metric}, $\delta
-(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function:
-\begin{equation}
+(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function
+$F_{f}: \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}}
+\longrightarrow \mathds{B}^{\mathsf{N}}$
+\begin{equation*}
\begin{array}{lrll}
-F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} &
-\longrightarrow & \mathds{B}^{\mathsf{N}} \\
-& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta
-(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
+& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta
+(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
\end{array}%
-\end{equation}%
+\end{equation*}%
\noindent where + and . are the Boolean addition and product operations.
Consider the phase space:
\begin{equation}
\item In addition, if two systems present the same cells and their respective
strategies start with the same terms, then the distance between these two points
must be small because the evolution of the two systems will be the same for a
-while. Indeed, the two dynamical systems start with the same initial condition,
-use the same update function, and as strategies are the same for a while, then
-components that are updated are the same too.
+while. Indeed, both dynamical systems start with the same initial condition,
+use the same update function, and as strategies are the same for a while, furthermore
+updated components are the same as well.
\end{itemize}
The distance presented above follows these recommendations. Indeed, if the floor
value $\lfloor d(X,Y)\rfloor $ is equal to $n$, then the systems $E, \check{E}$
precisely, this floating part is less than $10^{-k}$ if and only if the first
$k$ terms of the two strategies are equal. Moreover, if the $k^{th}$ digit is
nonzero, then the $k^{th}$ terms of the two strategies are different.
-The impact of this choice for a distance will be investigate at the end of the document.
+The impact of this choice for a distance will be investigated at the end of the document.
Finally, it has been established in \cite{guyeux10} that,
\end{proposition}
The chaotic property of $G_f$ has been firstly established for the vectorial
-Boolean negation $f(x_1,\hdots, x_\mathsf{N}) = (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
+Boolean negation $f_0(x_1,\hdots, x_\mathsf{N}) = (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly
introduced the notion of asynchronous iteration graph recalled bellow.
Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The
\end{theorem}
-These results of chaos and uniform distribution have lead us to study the possibility to build a
+These results of chaos and uniform distribution have led us to study the possibility of building a
pseudorandom number generator (PRNG) based on the chaotic iterations.
As $G_f$, defined on the domain $\llbracket 1 ; \mathsf{N} \rrbracket^{\mathds{N}}
-\times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
+\times \mathds{B}^\mathsf{N}$, is built from Boolean networks $f : \mathds{B}^\mathsf{N}
\rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
during implementations (due to the discrete nature of $f$). Indeed, it is as if
$\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ; \mathsf{N}
\rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance, in PRNG, or a physical noise in TRNG).
-Let us finally remark that the vectorial negation satisfies the hypotheses of the two theorems above.
+Let us finally remark that the vectorial negation satisfies the hypotheses of both theorems above.
\section{Application to Pseudorandomness}
\label{sec:pseudorandom}
We have proposed in~\cite{bgw09:ip} a new family of generators that receives
two PRNGs as inputs. These two generators are mixed with chaotic iterations,
-leading thus to a new PRNG that improves the statistical properties of each
-generator taken alone. Furthermore, our generator
-possesses various chaos properties that none of the generators used as input
+leading thus to a new PRNG that
+\begin{color}{red}
+should improves the statistical properties of each
+generator taken alone.
+Furthermore, the generator obtained by this way possesses various chaos properties that none of the generators used as input
present.
+
+
\begin{algorithm}[h!]
-%\begin{scriptsize}
+\begin{small}
\KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$
($n$ bits)}
\KwOut{a configuration $x$ ($n$ bits)}
$x\leftarrow x^0$\;
-$k\leftarrow b + \textit{XORshift}(b)$\;
+$k\leftarrow b + PRNG_1(b)$\;
\For{$i=0,\dots,k$}
{
-$s\leftarrow{\textit{XORshift}(n)}$\;
+$s\leftarrow{PRNG_2(n)}$\;
$x\leftarrow{F_f(s,x)}$\;
}
return $x$\;
-%\end{scriptsize}
-\caption{PRNG with chaotic functions}
+\end{small}
+\caption{An arbitrary round of $Old~ CI~ PRNG_f(PRNG_1,PRNG_2)$}
\label{CI Algorithm}
\end{algorithm}
+
+
+
+This generator is synthesized in Algorithm~\ref{CI Algorithm}.
+It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation des IC chaotiques};
+an integer $b$, ensuring that the number of executed iterations
+between two outputs is at least $b$
+and at most $2b+1$; and an initial configuration $x^0$.
+It returns the new generated configuration $x$. Internally, it embeds two
+inputted generators $PRNG_i(k), i=1,2$,
+ which must return integers
+uniformly distributed
+into $\llbracket 1 ; k \rrbracket$.
+For instance, these PRNGs can be the \textit{XORshift}~\cite{Marsaglia2003},
+being a category of very fast PRNGs designed by George Marsaglia
+that repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
+with a bit shifted version of it. Such a PRNG, which has a period of
+$2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}.
+This XORshift, or any other reasonable PRNG, is used
+in our own generator to compute both the number of iterations between two
+outputs (provided by $PRNG_1$) and the strategy elements ($PRNG_2$).
+
+%This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones.
+
+
\begin{algorithm}[h!]
+\begin{small}
\KwIn{the internal configuration $z$ (a 32-bit word)}
\KwOut{$y$ (a 32-bit word)}
$z\leftarrow{z\oplus{(z\ll13)}}$\;
$z\leftarrow{z\oplus{(z\ll5)}}$\;
$y\leftarrow{z}$\;
return $y$\;
-\medskip
+\end{small}
\caption{An arbitrary round of \textit{XORshift} algorithm}
\label{XORshift}
\end{algorithm}
+\subsection{A ``New CI PRNG''}
+
+In order to make the Old CI PRNG usable in practice, we have proposed
+an adapted version of the chaotic iteration based generator in~\cite{bg10:ip}.
+In this ``New CI PRNG'', we prevent from changing twice a given
+bit between two outputs.
+This new generator is designed by the following process.
+
+First of all, some chaotic iterations have to be done to generate a sequence
+$\left(x^n\right)_{n\in\mathds{N}} \in \left(\mathds{B}^{32}\right)^\mathds{N}$
+of Boolean vectors, which are the successive states of the iterated system.
+Some of these vectors will be randomly extracted and our pseudo-random bit
+flow will be constituted by their components. Such chaotic iterations are
+realized as follows. Initial state $x^0 \in \mathds{B}^{32}$ is a Boolean
+vector taken as a seed and chaotic strategy $\left(S^n\right)_{n\in\mathds{N}}\in
+\llbracket 1, 32 \rrbracket^\mathds{N}$ is
+an \emph{irregular decimation} of $PRNG_2$ sequence, as described in
+Algorithm~\ref{Chaotic iteration1}.
+
+Then, at each iteration, only the $S^n$-th component of state $x^n$ is
+updated, as follows: $x_i^n = x_i^{n-1}$ if $i \neq S^n$, else $x_i^n = \overline{x_i^{n-1}}$.
+Such a procedure is equivalent to achieve chaotic iterations with
+the Boolean vectorial negation $f_0$ and some well-chosen strategies.
+Finally, some $x^n$ are selected
+by a sequence $m^n$ as the pseudo-random bit sequence of our generator.
+$(m^n)_{n \in \mathds{N}} \in \mathcal{M}^\mathds{N}$ is computed from $PRNG_1$, where $\mathcal{M}\subset \mathds{N}^*$ is a finite nonempty set of integers.
+
+The basic design procedure of the New CI generator is summarized in Algorithm~\ref{Chaotic iteration1}.
+The internal state is $x$, the output state is $r$. $a$ and $b$ are those computed by the two input
+PRNGs. Lastly, the value $g(a)$ is an integer defined as in Eq.~\ref{Formula}.
+This function is required to make the outputs uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$
+(the reader is referred to~\cite{bg10:ip} for more information).
+\begin{equation}
+\label{Formula}
+m^n = g(y^n)=
+\left\{
+\begin{array}{l}
+0 \text{ if }0 \leqslant{y^n}<{C^0_{32}},\\
+1 \text{ if }{C^0_{32}} \leqslant{y^n}<\sum_{i=0}^1{C^i_{32}},\\
+2 \text{ if }\sum_{i=0}^1{C^i_{32}} \leqslant{y^n}<\sum_{i=0}^2{C^i_{32}},\\
+\vdots~~~~~ ~~\vdots~~~ ~~~~\\
+N \text{ if }\sum_{i=0}^{N-1}{C^i_{32}}\leqslant{y^n}<1.\\
+\end{array}
+\right.
+\end{equation}
-
-This generator is synthesized in Algorithm~\ref{CI Algorithm}.
-It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation des IC chaotiques};
-an integer $b$, ensuring that the number of executed iterations is at least $b$
-and at most $2b+1$; and an initial configuration $x^0$.
-It returns the new generated configuration $x$. Internally, it embeds two
-\textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
-uniformly distributed
-into $\llbracket 1 ; k \rrbracket$.
-\textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
-which repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number
-with a bit shifted version of it. This PRNG, which has a period of
-$2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used
-in our PRNG to compute the strategy length and the strategy elements.
-
-This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones.
+\begin{algorithm}
+\textbf{Input:} the internal state $x$ (32 bits)\\
+\textbf{Output:} a state $r$ of 32 bits
+\begin{algorithmic}[1]
+\FOR{$i=0,\dots,N$}
+{
+\STATE$d_i\leftarrow{0}$\;
+}
+\ENDFOR
+\STATE$a\leftarrow{PRNG_1()}$\;
+\STATE$m\leftarrow{g(a)}$\;
+\STATE$k\leftarrow{m}$\;
+\WHILE{$i=0,\dots,k$}
+
+\STATE$b\leftarrow{PRNG_2()~mod~\mathsf{N}}$\;
+\STATE$S\leftarrow{b}$\;
+ \IF{$d_S=0$}
+ {
+\STATE $x_S\leftarrow{ \overline{x_S}}$\;
+\STATE $d_S\leftarrow{1}$\;
+
+ }
+ \ELSIF{$d_S=1$}
+ {
+\STATE $k\leftarrow{ k+1}$\;
+ }\ENDIF
+\ENDWHILE\\
+\STATE $r\leftarrow{x}$\;
+\STATE return $r$\;
+\medskip
+\caption{An arbitrary round of the new CI generator}
+\label{Chaotic iteration1}
+\end{algorithmic}
+\end{algorithm}
+\end{color}
\subsection{Improving the Speed of the Former Generator}
-Instead of updating only one cell at each iteration, we can try to choose a
-subset of components and to update them together. Such an attempt leads
-to a kind of merger of the two sequences used in Algorithm
-\ref{CI Algorithm}. When the updating function is the vectorial negation,
+Instead of updating only one cell at each iteration,\begin{color}{red} we now propose to choose a
+subset of components and to update them together, for speed improvements. Such a proposition leads\end{color}
+to a kind of merger of the two sequences used in Algorithms
+\ref{CI Algorithm} and \ref{Chaotic iteration1}. When the updating function is the vectorial negation,
this algorithm can be rewritten as follows:
\begin{equation}
\forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n,
\end{array}
\right.
-\label{equation Oplus}
+\label{equation Oplus0}
\end{equation}
where $\oplus$ is for the bitwise exclusive or between two integers.
-This rewritten can be understood as follows. The $n-$th term $S^n$ of the
+This rewriting can be understood as follows. The $n-$th term $S^n$ of the
sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents
the list of cells to update in the state $x^n$ of the system (represented
as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th
component of this state (a binary digit) changes if and only if the $k-$th
digit in the binary decomposition of $S^n$ is 1.
-The single basic component presented in Eq.~\ref{equation Oplus} is of
+The single basic component presented in Eq.~\ref{equation Oplus0} is of
ordinary use as a good elementary brick in various PRNGs. It corresponds
to the following discrete dynamical system in chaotic iterations:
$\mathcal{S}^n \subset \llbracket 1, \mathsf{N} \rrbracket$ is such that
$k \in \mathcal{S}^n$ if and only if the $k-$th digit in the binary
decomposition of $S^n$ is 1. Such chaotic iterations are more general
-than the ones presented in Definition \ref{Def:chaotic iterations} for
-the fact that, instead of updating only one term at each iteration,
+than the ones presented in Definition \ref{Def:chaotic iterations} because, instead of updating only one term at each iteration,
we select a subset of components to change.
-Obviously, replacing Algorithm~\ref{CI Algorithm} by
-Equation~\ref{equation Oplus}, possible when the iteration function is
-the vectorial negation, leads to a speed improvement. However, proofs
+Obviously, replacing the previous CI PRNG Algorithms by
+Equation~\ref{equation Oplus0}, which is possible when the iteration function is
+the vectorial negation, leads to a speed improvement
+(the resulting generator will be referred as ``Xor CI PRNG''
+in what follows).
+However, proofs
of chaos obtained in~\cite{bg10:ij} have been established
only for chaotic iterations of the form presented in Definition
\ref{Def:chaotic iterations}. The question is now to determine whether the
\subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
\label{deuxième def}
Let us consider the discrete dynamical systems in chaotic iterations having
-the general form:
+the general form: $\forall n\in \mathds{N}^{\ast }$, $ \forall i\in
+\llbracket1;\mathsf{N}\rrbracket $,
\begin{equation}
-\forall n\in \mathds{N}^{\ast }, \forall i\in
-\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{
+ x_i^n=\left\{
\begin{array}{ll}
x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\
\left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n.
where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$.
Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function:
-\begin{equation}
-\begin{array}{lrll}
-F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} &
-\longrightarrow & \mathds{B}^{\mathsf{N}} \\
-& (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi
-(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},%
+$F_{f}: \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}}
+\longrightarrow \mathds{B}^{\mathsf{N}}$
+\begin{equation*}
+\begin{array}{rll}
+ (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}%
\end{array}%
-\end{equation}%
+\end{equation*}%
where + and . are the Boolean addition and product operations, and $\overline{x}$
is the negation of the Boolean $x$.
Consider the phase space:
\end{equation}
\noindent and the map defined on $\mathcal{X}$:
\begin{equation}
-G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf}
+G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant...
\end{equation}
\noindent where $\sigma$ is the \emph{shift} function defined by $\sigma
(S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in
\right.
\end{equation}%
-Another time, a shift function appears as a component of these general chaotic
+Once more, a shift function appears as a component of these general chaotic
iterations.
To study the Devaney's chaos property, a distance between two points
d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}),
\label{nouveau d}
\end{equation}
-\noindent where
-\begin{equation}
-\left\{
-\begin{array}{lll}
-\displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
-}\delta (E_{k},\check{E}_{k})}\textrm{ is another time the Hamming distance}, \\
-\displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
-\sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
-\end{array}%
-\right.
-\end{equation}
+\noindent where $ \displaystyle{d_{e}(E,\check{E})} = \displaystyle{\sum_{k=1}^{\mathsf{N}%
+ }\delta (E_{k},\check{E}_{k})}$ is once more the Hamming distance, and
+$ \displaystyle{d_{s}(S,\check{S})} = \displaystyle{\dfrac{9}{\mathsf{N}}%
+ \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}$,
+%%RAPH : ici, j'ai supprimé tous les sauts à la ligne
+%% \begin{equation}
+%% \left\{
+%% \begin{array}{lll}
+%% \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}%
+%% }\delta (E_{k},\check{E}_{k})} \textrm{ is once more the Hamming distance}, \\
+%% \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}%
+%% \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.%
+%% \end{array}%
+%% \right.
+%% \end{equation}
where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as
$A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$.
\begin{proof}
$d_e$ is the Hamming distance. We will prove that $d_s$ is a distance
-too, thus $d$ will be a distance as sum of two distances.
+too, thus $d$, as being the sum of two distances, will also be a distance.
\begin{itemize}
\item Obviously, $d_s(S,\check{S})\geqslant 0$, and if $S=\check{S}$, then
$d_s(S,\check{S})=0$. Conversely, if $d_s(S,\check{S})=0$, then
Before being able to study the topological behavior of the general
-chaotic iterations, we must firstly establish that:
+chaotic iterations, we must first establish that:
\begin{proposition}
For all $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, the function $G_f$ is continuous on
G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is convergent to
0. Let $\varepsilon >0$. \medskip
\begin{itemize}
-\item If $\varepsilon \geqslant 1$, we see that distance
+\item If $\varepsilon \geqslant 1$, we see that the distance
between $\left( G_{f}(S^n,E^n)\right) $ and $\left( G_{f}(S,E)\right) $ is
strictly less than 1 after the $max(n_{0},n_{1})^{th}$ term (same state).
\medskip
\noindent As a consequence, the $k+1$ first entries of the strategies of $%
G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of
the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $%
-10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline
+10^{-(k+1)}\leqslant \varepsilon $.
+
In conclusion,
-$$
-\forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}%
-,\forall n\geqslant N_{0},
- d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
+%%RAPH : ici j'ai rajouté une ligne
+$
+\forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}
+,$ $\forall n\geqslant N_{0},$
+$ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right)
\leqslant \varepsilon .
-$$
+$
$G_{f}$ is consequently continuous.
\end{proof}
that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$.
Consider the strategy $\tilde S$ that alternates the first $t_1$ terms
-of $S$ and the first $t_2$ terms of $S'$: $$\tilde
-S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
+of $S$ and the first $t_2$ terms of $S'$:
+%%RAPH : j'ai coupé la ligne en 2
+$$\tilde
+S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,$$$$\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It
is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after
$t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic
point. Since $\tilde S_t=S_t$ for $t<t_1$, by the choice of $t_1$, we
\end{proof}
+\begin{color}{red}
+\section{Statistical Improvements Using Chaotic Iterations}
+
+\label{The generation of pseudo-random sequence}
+
+
+Let us now explain why we are reasonable grounds to believe that chaos
+can improve statistical properties.
+We will show in this section that, when mixing defective PRNGs with
+chaotic iterations, the result presents better statistical properties
+(this section summarizes the work of~\cite{bfg12a:ip}).
+
+\subsection{Details of some Existing Generators}
+
+The list of defective PRNGs we will use
+as inputs for the statistical tests to come is introduced here.
-\section{Efficient PRNG based on Chaotic Iterations}
+Firstly, the simple linear congruency generator (LCGs) will be used.
+It is defined by the following recurrence:
+\begin{equation}
+x^n = (ax^{n-1} + c)~mod~m
+\label{LCG}
+\end{equation}
+where $a$, $c$, and $x^0$ must be, among other things, non-negative and less than
+$m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer as two (resp. three)
+combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}.
+
+Secondly, the multiple recursive generators (MRGs) will be used too, which
+are based on a linear recurrence of order
+$k$, modulo $m$~\cite{LEcuyerS07}:
+\begin{equation}
+x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m
+\label{MRG}
+\end{equation}
+Combination of two MRGs (referred as 2MRGs) is also used in these experimentations.
+
+Generators based on linear recurrences with carry will be regarded too.
+This family of generators includes the add-with-carry (AWC) generator, based on the recurrence:
+\begin{equation}
+\label{AWC}
+\begin{array}{l}
+x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\
+c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation}
+the SWB generator, having the recurrence:
+\begin{equation}
+\label{SWB}
+\begin{array}{l}
+x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\
+c^n=\left\{
+\begin{array}{l}
+1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\
+0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation}
+and the SWC generator designed by R. Couture, which is based on the following recurrence:
+\begin{equation}
+\label{SWC}
+\begin{array}{l}
+x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\
+c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation}
+
+Then the generalized feedback shift register (GFSR) generator has been implemented, that is:
+\begin{equation}
+x^n = x^{n-r} \oplus x^{n-k}
+\label{GFSR}
+\end{equation}
+
+
+Finally, the nonlinear inversive generator~\cite{LEcuyerS07} has been regarded too, which is:
+
+\begin{equation}
+\label{INV}
+\begin{array}{l}
+x^n=\left\{
+\begin{array}{ll}
+(a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\
+a^1 & \text{if}~ z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation}
+
+
+
+
+
+\subsection{Statistical tests}
+\label{Security analysis}
+
+Three batteries of tests are reputed and usually used
+to evaluate the statistical properties of newly designed pseudorandom
+number generators. These batteries are named DieHard~\cite{Marsaglia1996},
+the NIST suite~\cite{ANDREW2008}, and the most stringent one called
+TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries.
+
+
+
+\label{Results and discussion}
+\begin{table*}
+\renewcommand{\arraystretch}{1.3}
+\caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
+\label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
+\centering
+ \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|}
+ \hline\hline
+Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
+\backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline
+NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15} & 14/15 & 14/15 & 14/15 & 14/15& 14/15& 14/15 \\ \hline
+DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline
+\end{tabular}
+\end{table*}
+
+Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the
+results on the two firsts batteries recalled above, indicating that all the PRNGs presented
+in the previous section
+cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot
+fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic
+iterations can solve this issue.
+%More precisely, to
+%illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}:
+%\begin{enumerate}
+% \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category.
+% \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process.
+% \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$
+%\begin{equation}
+%\begin{array}{l}
+%\left\{
+%\begin{array}{l}
+%x_i^{n-1}~~~~~\text{if}~S^n\neq i \\
+%\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array}
+%\end{equation}
+%$m$ is called the \emph{functional power}.
+%\end{enumerate}
+%
+The obtained results are reproduced in Table
+\ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}.
+The scores written in boldface indicate that all the tests have been passed successfully, whereas an
+asterisk ``*'' means that the considered passing rate has been improved.
+The improvements are obvious for both the ``Old CI'' and ``New CI'' generators.
+Concerning the ``Xor CI PRNG'', the speed improvement makes that statistical
+results are not as good as for the two other versions of these CIPRNGs.
+
+
+\begin{table*}
+\renewcommand{\arraystretch}{1.3}
+\caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
+\label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
+\centering
+ \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|}
+ \hline
+Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline
+\backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline
+Old CIPRNG\\ \hline \hline
+NIST & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} & \textbf{15/15} & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
+DieHARD & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline
+New CIPRNG\\ \hline \hline
+NIST & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} & \textbf{15/15} & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline
+DieHARD & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline
+Xor CIPRNG\\ \hline\hline
+NIST & 14/15*& \textbf{15/15} * & \textbf{15/15} & \textbf{15/15} & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} \\ \hline
+DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18} & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline
+\end{tabular}
+\end{table*}
+
+
+We have then investigate in~\cite{bfg12a:ip} if it is possible to improve
+the statistical behavior of the Xor CI version by combining more than one
+$\oplus$ operation. Results are summarized in~\ref{threshold}, showing
+that rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained
+using chaotic iterations on defective generators.
+
+\begin{table*}
+\renewcommand{\arraystretch}{1.3}
+\caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
+\label{threshold}
+\centering
+ \begin{tabular}{|l||c|c|c|c|c|c|c|c|}
+ \hline
+Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3 & MRG2 \\ \hline\hline
+Threshold value $m$& 19 & 7 & 2& 1 & 11& 9& 3& 4\\ \hline\hline
+\end{tabular}
+\end{table*}
+
+Next subsection gives a concrete implementation of this Xor CI PRNG, which will
+new be simply called CIPRNG, or ``the proposed PRNG'', if this statement does not
+raise ambiguity.
+\end{color}
+
+\subsection{Efficient PRNG based on Chaotic Iterations}
\label{sec:efficient PRNG}
Based on the proof presented in the previous section, it is now possible to
An iteration of the system is simply the bitwise exclusive or between
the last computed state and the current strategy.
Topological properties of disorder exhibited by chaotic
-iterations can be inherited by the inputted generator, hoping by doing so to
+iterations can be inherited by the inputted generator, we hope by doing so to
obtain some statistical improvements while preserving speed.
-
-Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
-are
-done.
-Suppose that $x$ and the strategy $S^i$ are given as
-binary vectors.
-Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
-
-\begin{table}
-$$
-\begin{array}{|cc|cccccccccccccccc|}
-\hline
-x &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
-\hline
-S^i &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
-\hline
-x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
-\hline
-
-\hline
- \end{array}
-$$
-\caption{Example of an arbitrary round of the proposed generator}
-\label{TableExemple}
-\end{table}
-
-
-
-
-\lstset{language=C,caption={C code of the sequential PRNG based on chaotic iteration\
-s},label=algo:seqCIPRNG}
+%%RAPH : j'ai viré tout ca
+%% Let us give an example using 16-bits numbers, to clearly understand how the bitwise xor operations
+%% are
+%% done.
+%% Suppose that $x$ and the strategy $S^i$ are given as
+%% binary vectors.
+%% Table~\ref{TableExemple} shows the result of $x \oplus S^i$.
+
+%% \begin{table}
+%% \begin{scriptsize}
+%% $$
+%% \begin{array}{|cc|cccccccccccccccc|}
+%% \hline
+%% x &=&1&0&1&1&1&0&1&0&1&0&0&1&0&0&1&0\\
+%% \hline
+%% S^i &=&0&1&1&0&0&1&1&0&1&1&1&0&0&1&1&1\\
+%% \hline
+%% x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
+%% \hline
+
+%% \hline
+%% \end{array}
+%% $$
+%% \end{scriptsize}
+%% \caption{Example of an arbitrary round of the proposed generator}
+%% \label{TableExemple}
+%% \end{table}
+
+
+
+
+\lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label=algo:seqCIPRNG}
+\begin{small}
\begin{lstlisting}
+
unsigned int CIPRNG() {
static unsigned int x = 123123123;
unsigned long t1 = xorshift();
return x;
}
\end{lstlisting}
-
+\end{small}
32 least significant bits of a given integer, and the code \texttt{(unsigned
int)(t$>>$32)} in order to obtain the 32 most significant bits of \texttt{t}.
-So producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
+Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers
that are provided by 3 64-bits PRNGs. This version successfully passes the
stringent BigCrush battery of tests~\cite{LEcuyerS07}.
do so, we must firstly recall that in the CUDA~\cite{Nvid10}
environment, threads have a local identifier called
\texttt{ThreadIdx}, which is relative to the block containing
-them. Furthermore, in CUDA, parts of the code that are executed by the GPU are
+them. Furthermore, in CUDA, parts of the code that are executed by the GPU, are
called {\it kernels}.
It is possible to deduce from the CPU version a quite similar version adapted to GPU.
-The simple principle consists to make each thread of the GPU computing the CPU version of our PRNG.
+The simple principle consists in making each thread of the GPU computing the CPU version of our PRNG.
Of course, the three xor-like
PRNGs used in these computations must have different parameters.
-In a given thread, these lasts are
+In a given thread, these parameters are
randomly picked from another PRNGs.
The initialization stage is performed by the CPU.
To do it, the ISAAC PRNG~\cite{Jenkins96} is used to set all the
implementation of the xor128, the xorshift, and the xorwow respectively require
4, 5, and 6 unsigned long as internal variables.
-\begin{algorithm}
+\begin{algorithm}
+\begin{small}
\KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like
PRNGs in global memory\;
NumThreads: number of threads\;}
}
store internal variables in InternalVarXorLikeArray[threadIdx]\;
}
-
+\end{small}
\caption{Main kernel of the GPU ``naive'' version of the PRNG based on chaotic iterations}
\label{algo:gpu_kernel}
\end{algorithm}
+
+
Algorithm~\ref{algo:gpu_kernel} presents a naive implementation of the proposed PRNG on
GPU. Due to the available memory in the GPU and the number of threads
-used simultenaously, the number of random numbers that a thread can generate
+used simultaneously, the number of random numbers that a thread can generate
inside a kernel is limited (\emph{i.e.}, the variable \texttt{n} in
algorithm~\ref{algo:gpu_kernel}). For instance, if $100,000$ threads are used and
if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)},
This generator is able to pass the whole BigCrush battery of tests, for all
the versions that have been tested depending on their number of threads
-(called \texttt{NumThreads} in our algorithm, tested until $10$ millions).
+(called \texttt{NumThreads} in our algorithm, tested up to $5$ million).
\begin{remark}
-The proposed algorithm has the advantage to manipulate independent
+The proposed algorithm has the advantage of manipulating independent
PRNGs, so this version is easily adaptable on a cluster of computers too. The only thing
to ensure is to use a single ISAAC PRNG. To achieve this requirement, a simple solution consists in
using a master node for the initialization. This master node computes the initial parameters
-for all the differents nodes involves in the computation.
+for all the different nodes involved in the computation.
\end{remark}
\subsection{Improved Version for GPU}
which unsigned longs (64 bits) have been replaced by unsigned integers (32
bits).
-This version also can pass the whole {\it BigCrush} battery of tests.
+This version can also pass the whole {\it BigCrush} battery of tests.
\begin{algorithm}
-
+\begin{small}
\KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs
in global memory\;
NumThreads: Number of threads\;
}
store internal variables in InternalVarXorLikeArray[threadId]\;
}
-
+\end{small}
\caption{Main kernel for the chaotic iterations based PRNG GPU efficient
version\label{IR}}
\label{algo:gpu_kernel2}
To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
we must guarantee that this dynamical system iterates on the space
$\mathcal{X} = \mathcal{P}\left(\llbracket 1, \mathsf{N} \rrbracket\right)^\mathds{N}\times\mathds{B}^\mathsf{N}$.
-The left term $x$ obviously belongs into $\mathds{B}^ \mathsf{N}$.
+The left term $x$ obviously belongs to $\mathds{B}^ \mathsf{N}$.
To prevent from any flaws of chaotic properties, we must check that the right
term (the last $t$), corresponding to the strategies, can possibly be equal to any
integer of $\llbracket 1, \mathsf{N} \rrbracket$.
generation. Moreover this storage is completely
useless, in case of applications that consume the pseudorandom
numbers directly after generation. We can see that when the number of threads is greater
-than approximately 30,000 and lower than 5 millions, the number of pseudorandom numbers generated
+than approximately 30,000 and lower than 5 million, the number of pseudorandom numbers generated
per second is almost constant. With the naive version, this value ranges from 2.5 to
3GSamples/s. With the optimized version, it is approximately equal to
20GSamples/s. Finally we can remark that both GPU cards are quite similar, but in
\begin{figure}[htbp]
\begin{center}
- \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
+ \includegraphics[width=\columnwidth]{curve_time_xorlike_gpu.pdf}
\end{center}
\caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
\label{fig:time_xorlike_gpu}
BBS-based PRNG on GPU. On the Tesla C1060 we obtain approximately 700MSample/s
and on the GTX 280 about 670MSample/s, which is obviously slower than the
xorlike-based PRNG on GPU. However, we will show in the next sections that this
-new PRNG has a strong level of security, which is necessary paid by a speed
+new PRNG has a strong level of security, which is necessarily paid by a speed
reduction.
\begin{figure}[htbp]
\begin{center}
- \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
+ \includegraphics[width=\columnwidth]{curve_time_bbs_gpu.pdf}
\end{center}
\caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
\label{fig:time_bbs_gpu}
All these experiments allow us to conclude that it is possible to
generate a very large quantity of pseudorandom numbers statistically perfect with the xor-like version.
-In a certain extend, it is the case too with the secure BBS-based version, the speed deflation being
+To a certain extend, it is also the case with the secure BBS-based version, the speed deflation being
explained by the fact that the former version has ``only''
chaotic properties and statistical perfection, whereas the latter is also cryptographically secure,
as it is shown in the next sections.
denoted by $uv$.
In a cryptographic context, a pseudorandom generator is a deterministic
algorithm $G$ transforming strings into strings and such that, for any
-seed $m$ of length $m$, $G(m)$ (the output of $G$ on the input $m$) has size
+seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size
$\ell_G(m)$ with $\ell_G(m)>m$.
The notion of {\it secure} PRNGs can now be defined as follows.
the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
$(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
-(x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$.
+(x_o\bigoplus_{i=0}^{i=k}S_i)$. One in particular has $\ell_{X}(2N)=kN=\ell_H(N)$.
We claim now that if this PRNG is secure,
then the new one is secure too.
by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
one has
+$\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and,
+therefore,
\begin{equation}\label{PCH-2}
-\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
+\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1].
\end{equation}
Now, using (\ref{PCH-1}) again, one has for every $x$,
\end{equation}
where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
thus
-\begin{equation}\label{PCH-3}
+\begin{equation}%\label{PCH-3} %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant
D^\prime(H(x))=D(yx),
\end{equation}
where $y$ is randomly generated.
\mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
\end{equation}
From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
-there exist a polynomial time probabilistic
+there exists a polynomial time probabilistic
algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
$N\geq \frac{k_0}{2}$ satisfying
$$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
-proving that $H$ is not secure, a contradiction.
+proving that $H$ is not secure, which is a contradiction.
\end{proof}
algorithm (Algorithm~\ref{algo:gpu_kernel2}). Due to Proposition~\ref{cryptopreuve},
it simply consists in replacing
the {\it xor-like} PRNG by a cryptographically secure one.
-We have chosen the Blum Blum Shum generator~\cite{BBS} (usually denoted by BBS) having the form:
+We have chosen the Blum Blum Shub generator~\cite{BBS} (usually denoted by BBS) having the form:
$$x_{n+1}=x_n^2~ mod~ M$$ where $M$ is the product of two prime numbers (these
prime numbers need to be congruent to 3 modulus 4). BBS is known to be
very slow and only usable for cryptographic applications.
indistinguishable bits is lesser than or equals to
$log_2(log_2(M))$). In other words, to generate a 32-bits number, we need to use
8 times the BBS algorithm with possibly different combinations of $M$. This
-approach is not sufficient to be able to pass all the TestU01,
+approach is not sufficient to be able to pass all the tests of TestU01,
as small values of $M$ for the BBS lead to
- small periods. So, in order to add randomness we proceed with
+ small periods. So, in order to add randomness we have proceeded with
the followings modifications.
\begin{itemize}
\item
Firstly, we define 16 arrangement arrays instead of 2 (as described in
Algorithm \ref{algo:gpu_kernel2}), but only 2 of them are used at each call of
-the PRNG kernels. In practice, the selection of combinations
+the PRNG kernels. In practice, the selection of combination
arrays to be used is different for all the threads. It is determined
by using the three last bits of two internal variables used by BBS.
%This approach adds more randomness.
In Algorithm~\ref{algo:bbs_gpu},
character \& is for the bitwise AND. Thus using \&7 with a number
-gives the last 3 bits, providing so a number between 0 and 7.
+gives the last 3 bits, thus providing a number between 0 and 7.
\item
Secondly, after the generation of the 8 BBS numbers for each thread, we
have a 32-bits number whose period is possibly quite small. So
shift the 32-bits numbers, and add up to 6 new bits. This improvement is
described in Algorithm~\ref{algo:bbs_gpu}. In practice, the last 2 bits
of the first new BBS number are used to make a left shift of at most
-3 bits. The last 3 bits of the second new BBS number are add to the
+3 bits. The last 3 bits of the second new BBS number are added to the
strategy whatever the value of the first left shift. The third and the
fourth new BBS numbers are used similarly to apply a new left shift
and add 3 new bits.
\end{itemize}
\begin{algorithm}
-
+\begin{small}
\KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS
in global memory\;
NumThreads: Number of threads\;
}
store internal variables in InternalVarXorLikeArray[threadId] using a rotation\;
}
-
+\end{small}
\caption{main kernel for the BBS based PRNG GPU}
\label{algo:bbs_gpu}
\end{algorithm}
most} 3 bits, represented by \texttt{shift} in the algorithm, and we put
\emph{exactly} the \texttt{shift} last bits from a BBS into the \texttt{shift}
last bits of $t$. For this, an array named \texttt{array\_shift}, containing the
-correspondance between the shift and the number obtained with \texttt{shift} 1
+correspondence between the shift and the number obtained with \texttt{shift} 1
to make the \texttt{and} operation is used. For example, with a left shift of 0,
we make an and operation with 0, with a left shift of 3, we make an and
operation with 7 (represented by 111 in binary mode).
+\begin{color}{red}
+\subsection{Practical Security Evaluation}
+
+Suppose now that the PRNG will work during
+$M=100$ time units, and that during this period,
+an attacker can realize $10^{12}$ clock cycles.
+We thus wonder whether, during the PRNG's
+lifetime, the attacker can distinguish this
+sequence from truly random one, with a probability
+greater than $\varepsilon = 0.2$.
+We consider that $N$ has 900 bits.
+
+The random process is the BBS generator, which
+is cryptographically secure. More precisely, it
+is $(T,\varepsilon)-$secure: no
+$(T,\varepsilon)-$distinguishing attack can be
+successfully realized on this PRNG, if~\cite{Fischlin}
+$$
+T \leqslant \dfrac{L(N)}{6 N (log_2(N))\varepsilon^{-2}M^2}-2^7 N \varepsilon^{-2} M^2 log_2 (8 N \varepsilon^{-1}M)
+$$
+where $M$ is the length of the output ($M=100$ in
+our example), and $L(N)$ is equal to
+$$
+2.8\times 10^{-3} exp \left(1.9229 \times (N ~ln(2)^\frac{1}{3}) \times ln(N~ln 2)^\frac{2}{3}\right)
+$$
+is the number of clock cycles to factor a $N-$bit
+integer.
+
+A direct numerical application shows that this attacker
+cannot achieve its $(10^{12},0.2)$ distinguishing
+attack in that context.
+
+\end{color}
+
\subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem}
\label{Blum-Goldwasser}
We finish this research work by giving some thoughts about the use of
\item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$.
\item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$.
\item She recomputes the bit-vector $b$ by using BBS and $x_0$.
-\item Alice computes finally the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus b$.
+\item Alice finally computes the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus b$.
\end{enumerate}
her new public key will be $(S^0, N)$.
To encrypt his message, Bob will compute
-\begin{equation}
-c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)
-\end{equation}
+%%RAPH : ici, j'ai mis un simple $
+%\begin{equation}
+$c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$
+$ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$
+%%\end{equation}
instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$.
The same decryption stage as in Blum-Goldwasser leads to the sequence
$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$.
-Thus, with a simple use of $S^0$, Alice can obtained the plaintext.
+Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
By doing so, the proposed generator is used in place of BBS, leading to
the inheritance of all the properties presented in this paper.
has been generalized to improve its speed. It has been proven to be
chaotic according to Devaney.
Efficient implementations on GPU using xor-like PRNGs as input generators
-shown that a very large quantity of pseudorandom numbers can be generated per second (about
+have shown that a very large quantity of pseudorandom numbers can be generated per second (about
20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01,
namely the BigCrush.
Furthermore, we have shown that when the inputted generator is cryptographically
secure, then it is the case too for the PRNG we propose, thus leading to
the possibility to develop fast and secure PRNGs using the GPU architecture.
-Thoughts about an improvement of the Blum-Goldwasser cryptosystem, using the
-proposed method, has been finally proposed.
+\begin{color}{red} An improvement of the Blum-Goldwasser cryptosystem, making it
+behaves chaotically, has finally been proposed. \end{color}
-In future work we plan to extend these researches, building a parallel PRNG for clusters or
+In future work we plan to extend this research, building a parallel PRNG for clusters or
grid computing. Topological properties of the various proposed generators will be investigated,
and the use of other categories of PRNGs as input will be studied too. The improvement
of Blum-Goldwasser will be deepened. Finally, we