]> AND Private Git Repository - prng_gpu.git/blobdiff - prng_gpu.tex
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
bbs
[prng_gpu.git] / prng_gpu.tex
index 39536c619accd44ebe4ff4c130b2bcfb4a56ab2e..6e063fd1f07d19932c823816b8961c14b2868580 100644 (file)
@@ -39,11 +39,19 @@ on GPU}
 \begin{document}
 
 \author{Jacques M. Bahi, Rapha\"{e}l Couturier, and Christophe
-Guyeux\thanks{Authors in alphabetic order}}
+Guyeux, Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
 
 \maketitle
 
 \begin{abstract}
+In this paper we present a new pseudo-random numbers generator (PRNG) on
+graphics processing units  (GPU). This PRNG is based  on chaotic iterations.  it
+is proven  to be chaotic  in the Devanay's  formulation. We propose  an efficient
+implementation  for  GPU which  succeeds  to  the  {\it BigCrush},  the  hardest
+batteries of test of TestU01.  Experimentations show that this PRNG can generate
+about 20 billions of random numbers  per second on Tesla C1060 and NVidia GTX280
+cards.
+
 
 \end{abstract}
 
@@ -51,49 +59,85 @@ Guyeux\thanks{Authors in alphabetic order}}
 
 Random  numbers are  used in  many scientific  applications and  simulations. On
 finite  state machines,  as computers,  it is  not possible  to  generate random
-numbers but only pseudo-random numbers. In practice, a good pseudo-random number
+numbers but only pseudo-random numbers. In practice, a good pseudo-random numbers
 generator (PRNG) needs  to verify some features to be used  by scientists. It is
 important  to  be  able  to  generate  pseudo-random  numbers  efficiently,  the
 generation  needs to  be reproducible  and a  PRNG needs  to satisfy  many usual
 statistical properties. Finally, from our point a view, it is essential to prove
-that a  PRNG is chaotic.  Devaney~\cite{Devaney} proposed  a common mathematical
-formulation  of chaotic  dynamical  systems. Concerning  the statistical  tests,
-TestU01the is  the best-known public-domain statistical testing  packages. So we
-use it for all our PRNGs, especially  the {\it BigCrush} which is based on the largest
-serie of tests.
+that  a PRNG  is  chaotic.  Concerning  the  statistical tests,  TestU01 is  the
+best-known public-domain statistical testing package.   So we use it for all our
+PRNGs, especially the {\it BigCrush}  which provides the largest serie of tests.
+Concerning  the  chaotic properties,  Devaney~\cite{Devaney}  proposed a  common
+mathematical formulation of chaotic dynamical systems.
 
 In a  previous work~\cite{bgw09:ip}  we have proposed  a new familly  of chaotic
-PRNG  based on  chaotic iterations  (IC).   In this  paper we  propose a  faster
-version which is also proven to be chaotic with the Devaney formulation.
+PRNG  based on  chaotic iterations. We  have proven  that these  PRNGs are
+chaotic in the Devaney's sense.  In this paper we propose a faster version which
+is also proven to be chaotic.
 
 Although graphics  processing units (GPU)  was initially designed  to accelerate
 the manipulation of  images, they are nowadays commonly  used in many scientific
 applications. Therefore,  it is important  to be able to  generate pseudo-random
 numbers inside a GPU when a scientific application runs in a GPU. That is why we
-also provide an efficient PRNG for GPU respecting based on IC.
+also provide  an efficient  PRNG for  GPU respecting based  on IC.  Such devices
+allows us to generated almost 20 billions of random numbers per second.
 
+In order  to establish  that our  PRNGs are chaotic  according to  the Devaney's
+formulation, we  extend what we  have proposed in~\cite{guyeux10}.
 
+The rest of this paper  is organised as follows. In Section~\ref{section:related
+  works} we  review some GPU implementions  of PRNG.  Section~\ref{section:BASIC
+  RECALLS} gives some basic recalls  on Devanay's formation of chaos and chaotic
+iterations. In  Section~\ref{sec:pseudo-random} the proof of chaos  of our PRNGs
+is   studied.    Section~\ref{sec:efficient    prng}   presents   an   efficient
+implementation of  our chaotic PRNG  on a CPU.   Section~\ref{sec:efficient prng
+  gpu}   describes   the  GPU   implementation   of   our   chaotic  PRNG.    In
+Section~\ref{sec:experiments}     some    experimentations     are    presented.
+ Finally, we give a conclusion and some perspectives.
 
 
-Interet des itérations chaotiques pour générer des nombre alea\\
-Interet de générer des nombres alea sur GPU
 
 
 \section{Related works on GPU based PRNGs}
-
+\label{section:related works}
 In the litterature many authors have work on defining GPU based PRNGs. We do not
 want to be exhaustive and we just give the most significant works from our point
-of view.
+of view. When authors mention the  number of random numbers generated per second
+we mention  it. We  consider that  a million numbers  per second  corresponds to
+1MSample/s and than a billion numbers per second corresponds to 1GSample/s.
 
 In \cite{Pang:2008:cec},  the authors define  a PRNG based on  cellular automata
 which  does   not  require  high  precision  integer   arithmetics  nor  bitwise
 operations. There is no mention of statistical tests nor proof that this PRNG is
-chaotic. Concerning  the speed  of generation, they  can generate  about 3200000
-random numbers per seconds on a GeForce 7800 GTX GPU (which is quite old now).
+chaotic.  Concerning   the  speed  of   generation,  they  can   generate  about
+3.2MSample/s on a GeForce 7800 GTX GPU (which is quite old now).
 
 In \cite{ZRKB10}, the authors propose  different versions of efficient GPU PRNGs
-based on  Lagged Fibonacci,  Hybrid Taus  or Hybrid Taus.  They have  used these
-PRNGs for Langevin simulations of biomolecules fully implemented on GPU.
+based on  Lagged Fibonacci, Hybrid  Taus or Hybrid  Taus.  They have  used these
+PRNGs   for  Langevin   simulations   of  biomolecules   fully  implemented   on
+GPU. Performance of  the GPU versions are far better than  those obtained with a
+CPU and these PRNGs succeed to pass the {\it BigCrush} test of TestU01. There is
+no mention that their PRNGs have chaos mathematical properties.
+
+
+Authors of~\cite{conf/fpga/ThomasHL09}  have studied the  implementation of some
+PRNGs on  diferrent computing architectures: CPU,  field-programmable gate array
+(FPGA), GPU and massively parallel  processor. This study is interesting because
+it  shows the  performance  of the  same  PRNGs on  different architeture.   For
+example,  the FPGA  is globally  the  fastest architecture  and it  is also  the
+efficient one because it provides the fastest number of generated random numbers
+per joule. Concerning the GPU,  authors can generate betweend 11 and 16GSample/s
+with a GTX 280  GPU. The drawback of this work is  that those PRNGs only succeed
+the {\it Crush} test which is easier than the {\it Big Crush} test.
+
+Cuda  has developped  a  library for  the  generation of  random numbers  called
+Curand~\cite{curand11}.        Several       PRNGs        are       implemented:
+Xorwow~\cite{Marsaglia2003} and  some variants of Sobol. Some  tests report that
+the  fastest version provides  15GSample/s on  the new  Fermi C2050  card. Their
+PRNGs fail to succeed the whole tests of TestU01 on only one test.
+\newline
+\newline
+To the best of our knowledge no GPU implementation have been proven to have chaotic properties.
 
 \section{Basic Recalls}
 \label{section:BASIC RECALLS}
@@ -320,7 +364,7 @@ $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracke
 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance).
 
 \section{Application to Pseudo-Randomness}
-
+\label{sec:pseudo-random}
 \subsection{A First Pseudo-Random Number Generator}
 
 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
@@ -370,7 +414,7 @@ It takes as input: a function $f$;
 an integer $b$, ensuring that the number of executed iterations is at least $b$
 and at most $2b+1$; and an initial configuration $x^0$.
 It returns the new generated configuration $x$.  Internally, it embeds two
-\textit{XORshift}$(k)$ PRNGs \cite{Marsaglia2003} that returns integers
+\textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that returns integers
 uniformly distributed
 into $\llbracket 1 ; k \rrbracket$.
 \textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia,
@@ -690,6 +734,7 @@ have $d((S,E),(\tilde S,E))<\epsilon$.
 
 
 \section{Efficient PRNG based on Chaotic Iterations}
+\label{sec:efficient prng}
 
 In  order to  implement efficiently  a PRNG  based on  chaotic iterations  it is
 possible to improve  previous works [ref]. One solution  consists in considering
@@ -716,29 +761,7 @@ x \oplus S^i&=&1&1&0&1&1&1&0&0&0&1&1&1&0&1&0&1\\
  \end{array}
 $$
 
-%% \begin{figure}[htbp]
-%% \begin{center}
-%% \fbox{
-%% \begin{minipage}{14cm}
-%% unsigned int CIprng() \{\\
-%%   static unsigned int x = 123123123;\\
-%%   unsigned long t1 = xorshift();\\
-%%   unsigned long t2 = xor128();\\
-%%   unsigned long t3 = xorwow();\\
-%%   x = x\textasciicircum (unsigned int)t1;\\
-%%   x = x\textasciicircum (unsigned int)(t2$>>$32);\\
-%%   x = x\textasciicircum (unsigned int)(t3$>>$32);\\
-%%   x = x\textasciicircum (unsigned int)t2;\\
-%%   x = x\textasciicircum (unsigned int)(t1$>>$32);\\
-%%   x = x\textasciicircum (unsigned int)t3;\\
-%%   return x;\\
-%% \}
-%% \end{minipage}
-%% }
-%% \end{center}
-%% \caption{sequential Chaotic Iteration PRNG}
-%% \label{algo:seqCIprng}
-%% \end{figure}
+
 
 
 
@@ -776,7 +799,8 @@ variable \texttt{t}.   So to produce a  random number realizes  6 xor operations
 with 6 32-bits  numbers produced by 3 64-bits PRNG.   This version successes the
 BigCrush of the TestU01 battery~\cite{LEcuyerS07}.
 
-\section{Efficient prng based on chaotic iterations on GPU}
+\section{Efficient PRNGs based on chaotic iterations on GPU}
+\label{sec:efficient prng gpu}
 
 In  order to benefit  from computing  power of  GPU, a  program needs  to define
 independent blocks of threads which  can be computed simultaneously. In general,
@@ -784,8 +808,8 @@ the larger the number of threads is,  the more local memory is used and the less
 branching  instructions are  used (if,  while, ...),  the better  performance is
 obtained  on  GPU.  So  with  algorithm  \ref{algo:seqCIprng}  presented in  the
 previous section, it is possible to  build a similar program which computes PRNG
-on  GPU. In  the CUDA  [ref] environment,  threads have  a  local identificator,
-called \texttt{ThreadIdx} relative to the block containing them.
+on   GPU.  In  the   CUDA~\cite{Nvid10}  environment,   threads  have   a  local
+identificator, called \texttt{ThreadIdx} relative to the block containing them.
 
 
 \subsection{Naive version for GPU}
@@ -795,14 +819,14 @@ The principe consists in assigning the computation of a PRNG as in sequential to
 each thread  of the  GPU.  Of course,  it is  essential that the  three xor-like
 PRNGs  used for  our computation  have different  parameters. So  we  chose them
 randomly with  another PRNG. As the  initialisation is performed by  the CPU, we
-have chosen to use the ISAAC PRNG  [ref] to initalize all the parameters for the
-GPU version  of our  PRNG.  The  implementation of the  three xor-like  PRNGs is
-straightforward  as soon  as their  parameters have  been allocated  in  the GPU
-memory. Each xor-like  PRNGs used works with an internal  number $x$ which keeps
-the last generated random numbers. Other internal variables are also used by the
-xor-like PRNGs. More  precisely, the implementation of the  xor128, the xorshift
-and  the xorwow  respectively  require 4,  5  and 6  unsigned  long as  internal
-variables.
+have  chosen  to  use  the  ISAAC  PRNG~\cite{Jenkins96}  to  initalize  all  the
+parameters for  the GPU version  of our PRNG.   The implementation of  the three
+xor-like  PRNGs  is  straightforward  as  soon as  their  parameters  have  been
+allocated in  the GPU memory.  Each xor-like PRNGs  used works with  an internal
+number  $x$  which keeps  the  last  generated  random numbers.  Other  internal
+variables  are   also  used   by  the  xor-like   PRNGs.  More   precisely,  the
+implementation of the  xor128, the xorshift and the  xorwow respectively require
+4, 5 and 6 unsigned long as internal variables.
 
 \begin{algorithm}
 
@@ -837,6 +861,9 @@ and  random  number of  our  PRNG  is  equals to  $100,000\times  ((4+5+6)\times
 All the  tests performed  to pass the  BigCrush of TestU01  succeeded. Different
 number of threads, called \texttt{NumThreads} in our algorithm, have been tested
 upto $10$ millions.
+\newline
+\newline
+{\bf QUESTION : on laisse cette remarque, je suis mitigé !!!}
 
 \begin{remark}
 Algorithm~\ref{algo:gpu_kernel}  has  the  advantage to  manipulate  independent
@@ -862,7 +889,7 @@ which represent the indexes of the  other threads for which the results are used
 by the  current thread. In  the algorithm, we  consider that a  64-bits xor-like
 PRNG is used, that is why both 32-bits parts are used.
 
-This version also succeed to the BigCrush batteries of tests.
+This version also succeeds to the {\it BigCrush} batteries of tests.
 
 \begin{algorithm}
 
@@ -873,17 +900,15 @@ tab1, tab2: Arrays containing permutations of size permutation\_size\;}
 
 \KwOut{NewNb: array containing random numbers in global memory}
 \If{threadId is concerned} {
-  retrieve data from InternalVarXorLikeArray[threadId] in local variables\;
+  retrieve data from InternalVarXorLikeArray[threadId] in local variables including shared memory and x\;
   offset = threadIdx\%permutation\_size\;
   o1 = threadIdx-offset+tab1[offset]\;
   o2 = threadIdx-offset+tab2[offset]\;
   \For{i=1 to n} {
     t=xor-like()\;
-    shared\_mem[threadId]=(unsigned int)t\;
-    x = x $\oplus$ (unsigned int) t\;
-    x = x $\oplus$ (unsigned int) (t>>32)\;
-    x = x $\oplus$ shared[o1]\;
-    x = x $\oplus$ shared[o2]\;
+    t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\;
+    shared\_mem[threadId]=t\;
+    x = x $\oplus$ t\;
 
     store the new PRNG in NewNb[NumThreads*threadId+i]\;
   }
@@ -897,9 +922,9 @@ version}
 
 \subsection{Theoretical Evaluation of the Improved Version}
 
-A run of Algorithm~\ref{algo:gpu_kernel2} consists in four operations having 
+A run of Algorithm~\ref{algo:gpu_kernel2} consists in three operations having 
 the form of Equation~\ref{equation Oplus}, which is equivalent to the iterative
-system of Eq.~\ref{eq:generalIC}. That is, four iterations of the general chaotic
+system of Eq.~\ref{eq:generalIC}. That is, three iterations of the general chaotic
 iterations are realized between two stored values of the PRNG.
 To be certain that we are in the framework of Theorem~\ref{t:chaos des general},
 we must guarantee that this dynamical system iterates on the space 
@@ -918,559 +943,748 @@ Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
 chaotic iterations presented previously, and for this reason, it satisfies the 
 Devaney's formulation of a chaotic behavior.
 
-\section{Experiments}
+\section{A cryptographically secure prng for GPU}
+
+It is  possible to build a  cryptographically secure prng based  on the previous
+algorithm (algorithm~\ref{algo:gpu_kernel2}).   It simply consists  in replacing
+the  {\it  xor-like} algorithm  by  another  cryptographically  secure prng.  In
+practice, we suggest  to use the BBS algorithm~\cite{BBS}  which takes the form:
+$$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. Those
+prime numbers  need to be congruent  to 3 modulus  4. In practice, this  PRNG is
+known to  be slow and  not efficient for  the generation of random  numbers. For
+current  GPU   cards,  the  modulus   operation  is  the  most   time  consuming
+operation. So in  order to obtain quite reasonable  performances, it is required
+to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
+less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
+pratice we can  choose prime numbers around 256 that are  congruent to 3 modulus
+4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
+chosen  (the   maximum  number  of   undistinguishing  is  less  or   equals  to
+$log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
+the BBS algorithm, with different combinations of $M$ is required.
+
+Currently this PRNG does not succeed to pass all the tests of TestU01.
 
-Different experiments have been performed in order to measure the generation
-speed.
-\begin{figure}[t]
+\section{Experiments}
+\label{sec:experiments}
+
+Different experiments  have been  performed in order  to measure  the generation
+speed. We have used  a computer equiped with Tesla C1060 NVidia  GPU card and an
+Intel  Xeon E5530 cadenced  at 2.40  GHz for  our experiments  and we  have used
+another one  equipped with  a less performant  CPU and  a GeForce GTX  280. Both
+cards have 240 cores.
+
+In  Figure~\ref{fig:time_xorlike_gpu} we  compare the  number of  random numbers
+generated per second with the xor-like based PRNG. In this figure, the optimized
+version use the {\it xor64} described in~\cite{Marsaglia2003}. The naive version
+use  the three  xor-like  PRNGs described  in Listing~\ref{algo:seqCIprng}.   In
+order to obtain the optimal performance we removed the storage of random numbers
+in the GPU memory. This step is time consuming and slows down the random numbers
+generation.  Moreover, if one is  interested by applications that consume random
+numbers  directly   when  they  are  generated,  their   storage  are  completely
+useless. In this  figure we can see  that when the number of  threads is greater
+than approximately 30,000 upto 5 millions the number of random numbers generated
+per second  is almost constant.  With the  naive version, it is  between 2.5 and
+3GSample/s.   With  the  optimized   version,  it  is  approximately  equals  to
+20GSample/s. Finally  we can remark  that both GPU  cards are quite  similar. In
+practice,  the Tesla C1060  has more  memory than  the GTX  280 and  this memory
+should be of better quality.
+
+\begin{figure}[htbp]
 \begin{center}
-  \includegraphics[scale=.7]{curve_time_gpu.pdf}
+  \includegraphics[scale=.7]{curve_time_xorlike_gpu.pdf}
 \end{center}
-\caption{Number of random numbers generated per second}
-\label{fig:time_naive_gpu}
+\caption{Number of random numbers generated per second with the xorlike based PRNG}
+\label{fig:time_xorlike_gpu}
 \end{figure}
 
 
-First of all we have compared the time to generate X random numbers with both
-the CPU version and the GPU version. 
+In  comparison,   Listing~\ref{algo:seqCIprng}  allows  us   to  generate  about
+138MSample/s with only one core of the Xeon E5530.
 
-Faire une courbe du nombre de random en fonction du nombre de threads,
-éventuellement en fonction du nombres de threads par bloc.
 
+In Figure~\ref{fig:time_bbs_gpu}  we highlight the performance  of the optimized
+BBS based  PRNG on GPU. Performances are  less important. On the  Tesla C1060 we
+obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s.
 
+\begin{figure}[htbp]
+\begin{center}
+  \includegraphics[scale=.7]{curve_time_bbs_gpu.pdf}
+\end{center}
+\caption{Number of random numbers generated per second with the BBS based PRNG}
+\label{fig:time_bbs_gpu}
+\end{figure}
 
-\section{The relativity of disorder}
-\label{sec:de la relativité du désordre}
+Both  these  experimentations allows  us  to conclude  that  it  is possible  to
+generate a  huge number of pseudo-random  numbers with the  xor-like version and
+about tens  times less with the BBS  based version. The former  version has only
+chaotic properties whereas the latter also has cryptographically properties.
 
-In the next two sections, we investigate the impact of the choices that have
-lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
 
-\subsection{Impact of the topology's finenesse}
+%% \section{Cryptanalysis of the Proposed PRNG}
 
-Let us firstly introduce the following notations.
 
-\begin{notation}
-$\mathcal{X}_\tau$ will denote the topological space
-$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
-of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
-$\mathcal{V} (x)$, if there is no ambiguity).
-\end{notation}
+%% Mettre ici la preuve de PCH
 
+%\section{The relativity of disorder}
+%\label{sec:de la relativité du désordre}
 
+%In the next two sections, we investigate the impact of the choices that have
+%lead to the definitions of measures in Sections \ref{sec:chaotic iterations} and \ref{deuxième def}.
 
-\begin{theorem}
-\label{Th:chaos et finesse}
-Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
-$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
-both for $\tau$ and $\tau'$.
+%\subsection{Impact of the topology's finenesse}
 
-If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
-$(\mathcal{X}_\tau,f)$ is chaotic too.
-\end{theorem}
+%Let us firstly introduce the following notations.
 
-\begin{proof}
-Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
+%\begin{notation}
+%$\mathcal{X}_\tau$ will denote the topological space
+%$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set
+%of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply
+%$\mathcal{V} (x)$, if there is no ambiguity).
+%\end{notation}
 
-Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
-\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
-can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
-\varnothing$. Consequently, $f$ is $\tau-$transitive.
 
-Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
-all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
-periodic point for $f$ into $V$.
 
-Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
-of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
+%\begin{theorem}
+%\label{Th:chaos et finesse}
+%Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t.
+%$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous
+%both for $\tau$ and $\tau'$.
 
-But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
-\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
-periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
-proven. 
-\end{proof}
+%If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then
+%$(\mathcal{X}_\tau,f)$ is chaotic too.
+%\end{theorem}
 
-\subsection{A given system can always be claimed as chaotic}
+%\begin{proof}
+%Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$.
 
-Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
-Then this function is chaotic (in a certain way):
+%Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in
+%\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we
+%can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) =
+%\varnothing$. Consequently, $f$ is $\tau-$transitive.
 
-\begin{theorem}
-Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
-at least a fixed point.
-Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
-topology on $\X$.
-\end{theorem}
+%Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for
+%all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a
+%periodic point for $f$ into $V$.
 
+%Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood
+%of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$.
 
-\begin{proof}
-$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
-\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
-\varnothing$.
-As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
-an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
-instance, $n=0$ is appropriate.
+%But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in
+%\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a
+%periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is
+%proven. 
+%\end{proof}
 
-Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
-\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
-regular, and the result is established.
-\end{proof}
+%\subsection{A given system can always be claimed as chaotic}
 
+%Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point.
+%Then this function is chaotic (in a certain way):
 
+%\begin{theorem}
+%Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having
+%at least a fixed point.
+%Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete)
+%topology on $\X$.
+%\end{theorem}
 
 
-\subsection{A given system can always be claimed as non-chaotic}
+%\begin{proof}
+%$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus
+%\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq
+%\varnothing$.
+%As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for
+%an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For
+%instance, $n=0$ is appropriate.
 
-\begin{theorem}
-Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
-If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
-(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
-\end{theorem}
+%Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V =
+%\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is
+%regular, and the result is established.
+%\end{proof}
 
-\begin{proof}
-Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
-f\right)$ is both transitive and regular.
 
-Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
-contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
-f\right)$ is regular. Then $x$ must be a periodic point of $f$.
 
-Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
-because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
-\mathcal{X}, y \notin I_x$.
 
-As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
-sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
-\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
-\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
-\end{proof}
+%\subsection{A given system can always be claimed as non-chaotic}
 
+%\begin{theorem}
+%Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$.
+%If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic
+%(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology.
+%\end{theorem}
 
+%\begin{proof}
+%Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty},
+%f\right)$ is both transitive and regular.
 
+%Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must
+%contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty},
+%f\right)$ is regular. Then $x$ must be a periodic point of $f$.
 
+%Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite
+%because  $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in
+%\mathcal{X}, y \notin I_x$.
+
+%As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty
+%sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq
+%\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x
+%\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$.
+%\end{proof}
+
+
+
+
+
+
+%\section{Chaos on the order topology}
+%\label{sec: chaos order topology}
+%\subsection{The phase space is an interval of the real line}
+
+%\subsubsection{Toward a topological semiconjugacy}
+
+%In what follows, our intention is to establish, by using a topological
+%semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
+%iterations on a real interval. To do so, we must firstly introduce some
+%notations and terminologies. 
+
+%Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
+%1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
+%\times \B^\mathsf{N}$.
+
+
+%\begin{definition}
+%The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
+%0, 2^{10} \big[$ is defined by:
+%\begin{equation}
+% \begin{array}{cccl}
+%\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
+%\longrightarrow & \big[ 0, 2^{10} \big[ \\
+% & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
+%\varphi \left((S,E)\right)
+%\end{array}
+%\end{equation}
+%where $\varphi\left((S,E)\right)$ is the real number:
+%\begin{itemize}
+%\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
+%is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
+%\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
+%\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
+%\end{itemize}
+%\end{definition}
+
+
+
+%$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
+%real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
+%iterations $\Go$ on this real interval. To do so, two intermediate functions
+%over $\big[ 0, 2^{10} \big[$ must be introduced:
+
+
+%\begin{definition}
+%\label{def:e et s}
+%Let $x \in \big[ 0, 2^{10} \big[$ and:
+%\begin{itemize}
+%\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
+%$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
+%\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
+%decomposition of $x$ is the one that does not have an infinite number of 9: 
+%$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
+%\end{itemize}
+%$e$ and $s$ are thus defined as follows:
+%\begin{equation}
+%\begin{array}{cccl}
+%e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
+% & x & \longmapsto & (e_0, \hdots, e_9)
+%\end{array}
+%\end{equation}
+%and
+%\begin{equation}
+% \begin{array}{cccc}
+%s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
+%\rrbracket^{\mathds{N}} \\
+% & x & \longmapsto & (s^k)_{k \in \mathds{N}}
+%\end{array}
+%\end{equation}
+%\end{definition}
+
+%We are now able to define the function $g$, whose goal is to translate the
+%chaotic iterations $\Go$ on an interval of $\mathds{R}$.
+
+%\begin{definition}
+%$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
+%\begin{equation}
+%\begin{array}{cccc}
+%g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
+% & x & \longmapsto & g(x)
+%\end{array}
+%\end{equation}
+%where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
+%\begin{itemize}
+%\item its integral part has a binary decomposition equal to $e_0', \hdots,
+%e_9'$, with:
+% \begin{equation}
+%e_i' = \left\{
+%\begin{array}{ll}
+%e(x)_i & \textrm{ if } i \neq s^0\\
+%e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
+%\end{array}
+%\right.
+%\end{equation}
+%\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
+%\end{itemize}
+%\end{definition}
+
+%\bigskip
+
+
+%In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
+%\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
+%\begin{equation}
+%g(x) =
+%\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
+%\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
+%\end{equation}
+
+
+%\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
+
+%Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
+%usual one being the Euclidian distance recalled bellow:
+
+%\begin{notation}
+%\index{distance!euclidienne}
+%$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
+%$\Delta(x,y) = |y-x|^2$.
+%\end{notation}
+
+%\medskip
+
+%This Euclidian distance does not reproduce exactly the notion of proximity
+%induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
+%This is the reason why we have to introduce the following metric:
+
+
+
+%\begin{definition}
+%Let $x,y \in \big[ 0, 2^{10} \big[$.
+%$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
+%defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
+%where:
+%\begin{center}
+%$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
+%\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
+%\dfrac{|S^k-\check{S}^k|}{10^k}}$.
+%\end{center}
+%\end{definition}
+
+%\begin{proposition}
+%$D$ is a distance on $\big[ 0, 2^{10} \big[$.
+%\end{proposition}
+
+%\begin{proof}
+%The three axioms defining a distance must be checked.
+%\begin{itemize}
+%\item $D \geqslant 0$, because everything is positive in its definition. If
+%$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
+%(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
+%$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
+%the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
+%\item $D(x,y)=D(y,x)$.
+%\item Finally, the triangular inequality is obtained due to the fact that both
+%$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
+%\end{itemize}
+%\end{proof}
+
+
+%The convergence of sequences according to $D$ is not the same than the usual
+%convergence related to the Euclidian metric. For instance, if $x^n \to x$
+%according to $D$, then necessarily the integral part of each $x^n$ is equal to
+%the integral part of $x$ (at least after a given threshold), and the decimal
+%part of $x^n$ corresponds to the one of $x$ ``as far as required''.
+%To illustrate this fact, a comparison between $D$ and the Euclidian distance is
+%given Figure \ref{fig:comparaison de distances}. These illustrations show that
+%$D$ is richer and more refined than the Euclidian distance, and thus is more
+%precise.
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[Function $x \to dist(x;1,234) $ on the interval
+%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
+%  \subfigure[Function $x \to dist(x;3) $ on the interval
+%$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
+%\end{center}
+%\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
+%\label{fig:comparaison de distances}
+%\end{figure}
+
+
+
+
+%\subsubsection{The semiconjugacy}
+
+%It is now possible to define a topological semiconjugacy between $\mathcal{X}$
+%and an interval of $\mathds{R}$:
+
+%\begin{theorem}
+%Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
+%$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
+%\begin{equation*}
+%\begin{CD}
+%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
+%\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
+%    @V{\varphi}VV                    @VV{\varphi}V\\
+%\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
+%D~\right)
+%\end{CD}
+%\end{equation*}
+%\end{theorem}
+
+%\begin{proof}
+%$\varphi$ has been constructed in order to be continuous and onto.
+%\end{proof}
+
+%In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
+%\big[$.
+
+
+
+
+
+
+%\subsection{Study of the chaotic iterations described as a real function}
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
+%  \subfigure[ICs on the interval
+%$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
+%\end{center}
+%\caption{Representation of the chaotic iterations.}
+%\label{fig:ICs}
+%\end{figure}
+
+
+
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
+%  \subfigure[ICs on the interval
+%$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
+%\end{center}
+%\caption{ICs on small intervals.}
+%\label{fig:ICs2}
+%\end{figure}
+
+%\begin{figure}[t]
+%\begin{center}
+%  \subfigure[ICs on the interval
+%$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
+%  \subfigure[ICs on the interval 
+%$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
+%\end{center}
+%\caption{General aspect of the chaotic iterations.}
+%\label{fig:ICs3}
+%\end{figure}
+
+
+%We have written a Python program to represent the chaotic iterations with the
+%vectorial negation on the real line $\mathds{R}$. Various representations of
+%these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
+%It can be remarked that the function $g$ is a piecewise linear function: it is
+%linear on each interval having the form $\left[ \dfrac{n}{10},
+%\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
+%slope is equal to 10. Let us justify these claims:
+
+%\begin{proposition}
+%\label{Prop:derivabilite des ICs}
+%Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
+%$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
+%\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
+
+%Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
+%\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
+%$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
+%g'(x)=10$.
+%\end{proposition}
 
 
-\section{Chaos on the order topology}
+%\begin{proof}
+%Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
+%0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
+%prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
+%and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
+%the images $g(x)$ of these points $x$:
+%\begin{itemize}
+%\item Have the same integral part, which is $e$, except probably the bit number
+%$s^0$. In other words, this integer has approximately the same binary
+%decomposition than $e$, the sole exception being the digit $s^0$ (this number is
+%then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
+%\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
+%\item A shift to the left has been applied to the decimal part $y$, losing by
+%doing so the common first digit $s^0$. In other words, $y$ has been mapped into
+%$10\times y - s^0$.
+%\end{itemize}
+%To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
+%multiplication by 10, and second, add the same constant to each term, which is
+%$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
+%\end{proof}
+
+%\begin{remark}
+%Finally, chaotic iterations are elements of the large family of functions that
+%are both chaotic and piecewise linear (like the tent map).
+%\end{remark}
+
+
+
+%\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
+
+%The two propositions bellow allow to compare our two distances on $\big[ 0,
+%2^\mathsf{N} \big[$:
+
+%\begin{proposition}
+%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
+%2^\mathsf{N} \big[, D~\right)$ is not continuous. 
+%\end{proposition}
+
+%\begin{proof}
+%The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
+%such that:
+%\begin{itemize}
+%\item $\Delta (x^n,2) \to 0.$
+%\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
+%\end{itemize}
+
+%The sequential characterization of the continuity concludes the demonstration.
+%\end{proof}
+
+
+
+%A contrario:
+
+%\begin{proposition}
+%Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
+%2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
+%\end{proposition}
+
+%\begin{proof}
+%If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
+%threshold, because $D_e$ only returns integers. So, after this threshold, the
+%integral parts of all the $x^n$ are equal to the integral part of $x$. 
+
+%Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
+%\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
+%means that for all $k$, an index $N_k$ can be found such that, $\forall n
+%\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
+%digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
+%result.
+%\end{proof}
+
+%The conclusion of these propositions is that the proposed metric is more precise
+%than the Euclidian distance, that is:
 
-\subsection{The phase space is an interval of the real line}
+%\begin{corollary}
+%$D$ is finer than the Euclidian distance $\Delta$.
+%\end{corollary}
 
-\subsubsection{Toward a topological semiconjugacy}
+%This corollary can be reformulated as follows:
+
+%\begin{itemize}
+%\item The topology produced by $\Delta$ is a subset of the topology produced by
+%$D$.
+%\item $D$ has more open sets than $\Delta$.
+%\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
+%to converge with the one inherited by $\Delta$, which is denoted here by
+%$\tau_\Delta$.
+%\end{itemize}
 
-In what follows, our intention is to establish, by using a topological
-semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as
-iterations on a real interval. To do so, we must firstly introduce some
-notations and terminologies. 
 
-Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket
-1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N}
-\times \B^\mathsf{N}$.
+%\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
+%\label{chpt:Chaos des itérations chaotiques sur R}
 
 
-\begin{definition}
-The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[
-0, 2^{10} \big[$ is defined by:
-\begin{equation}
- \begin{array}{cccl}
-\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}&
-\longrightarrow & \big[ 0, 2^{10} \big[ \\
- & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto &
-\varphi \left((S,E)\right)
-\end{array}
-\end{equation}
-where $\varphi\left((S,E)\right)$ is the real number:
-\begin{itemize}
-\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that
-is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$.
-\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots =
-\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ 
-\end{itemize}
-\end{definition}
 
+%\subsubsection{Chaos according to Devaney}
 
+%We have recalled previously that the chaotic iterations $\left(\Go,
+%\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
+%can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
+%topology, because:
+%\begin{itemize}
+%\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
+%\big[_D\right)$ are semiconjugate by $\varphi$,
+%\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
+%according to Devaney, because the semiconjugacy preserve this character.
+%\item But the topology generated by $D$ is finer than the topology generated by
+%the Euclidian distance $\Delta$ -- which is the order topology.
+%\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
+%chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
+%topology on $\mathds{R}$.
+%\end{itemize}
 
-$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a
-real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic
-iterations $\Go$ on this real interval. To do so, two intermediate functions
-over $\big[ 0, 2^{10} \big[$ must be introduced:
+%This result can be formulated as follows.
 
+%\begin{theorem}
+%\label{th:IC et topologie de l'ordre}
+%The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
+%Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
+%order topology.
+%\end{theorem}
 
-\begin{definition}
-\label{def:e et s}
-Let $x \in \big[ 0, 2^{10} \big[$ and:
-\begin{itemize}
-\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$:
-$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$.
-\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal
-decomposition of $x$ is the one that does not have an infinite number of 9: 
-$\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$.
-\end{itemize}
-$e$ and $s$ are thus defined as follows:
-\begin{equation}
-\begin{array}{cccl}
-e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\
- & x & \longmapsto & (e_0, \hdots, e_9)
-\end{array}
-\end{equation}
-and
-\begin{equation}
- \begin{array}{cccc}
-s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9
-\rrbracket^{\mathds{N}} \\
- & x & \longmapsto & (s^k)_{k \in \mathds{N}}
-\end{array}
-\end{equation}
-\end{definition}
+%Indeed this result is weaker than the theorem establishing the chaos for the
+%finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
+%still remains important. Indeed, we have studied in our previous works a set
+%different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
+%in order to be as close as possible from the computer: the properties of
+%disorder proved theoretically will then be preserved when computing. However, we
+%could wonder whether this change does not lead to a disorder of a lower quality.
+%In other words, have we replaced a situation of a good disorder lost when
+%computing, to another situation of a disorder preserved but of bad quality.
+%Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
+% 
 
-We are now able to define the function $g$, whose goal is to translate the
-chaotic iterations $\Go$ on an interval of $\mathds{R}$.
 
-\begin{definition}
-$g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by:
-\begin{equation}
-\begin{array}{cccc}
-g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\
- & x & \longmapsto & g(x)
-\end{array}
-\end{equation}
-where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow:
-\begin{itemize}
-\item its integral part has a binary decomposition equal to $e_0', \hdots,
-e_9'$, with:
- \begin{equation}
-e_i' = \left\{
-\begin{array}{ll}
-e(x)_i & \textrm{ if } i \neq s^0\\
-e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\
-\end{array}
-\right.
-\end{equation}
-\item whose decimal part is $s(x)^1, s(x)^2, \hdots$
-\end{itemize}
-\end{definition}
-
-\bigskip
-
-
-In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + 
-\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then:
-\begin{equation}
-g(x) =
-\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + 
-\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. 
-\end{equation}
 
 
-\subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$}
 
-Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most
-usual one being the Euclidian distance recalled bellow:
 
-\begin{notation}
-\index{distance!euclidienne}
-$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is,
-$\Delta(x,y) = |y-x|^2$.
-\end{notation}
+\section{Security Analysis}
 
-\medskip
 
-This Euclidian distance does not reproduce exactly the notion of proximity
-induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$.
-This is the reason why we have to introduce the following metric:
 
 
+In this section the concatenation of two strings $u$ and $v$ is classically
+denoted by $uv$.
+In a cryptographic context, a pseudo-random generator is a deterministic
+algorithm $G$ transforming strings  into strings and such that, for any
+seed $w$ of length $N$, $G(w)$ (the output of $G$ on the input $w$) has size
+$\ell_G(N)$ with $\ell_G(N)>N$.
+The notion of {\it secure} PRNGs can now be defined as follows. 
 
 \begin{definition}
-Let $x,y \in \big[ 0, 2^{10} \big[$.
-$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$
-defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$,
-where:
-\begin{center}
-$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k,
-\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty
-\dfrac{|S^k-\check{S}^k|}{10^k}}$.
-\end{center}
+A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
+algorithm $D$, for any positive polynomial $p$, and for all sufficiently
+large $k$'s,
+$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)}=1]|< \frac{1}{p(N)},$$
+where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
+probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
+internal coin tosses of $D$. 
 \end{definition}
 
-\begin{proposition}
-$D$ is a distance on $\big[ 0, 2^{10} \big[$.
-\end{proposition}
-
-\begin{proof}
-The three axioms defining a distance must be checked.
-\begin{itemize}
-\item $D \geqslant 0$, because everything is positive in its definition. If
-$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal
-(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then
-$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have
-the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$.
-\item $D(x,y)=D(y,x)$.
-\item Finally, the triangular inequality is obtained due to the fact that both
-$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it.
-\end{itemize}
-\end{proof}
-
-
-The convergence of sequences according to $D$ is not the same than the usual
-convergence related to the Euclidian metric. For instance, if $x^n \to x$
-according to $D$, then necessarily the integral part of each $x^n$ is equal to
-the integral part of $x$ (at least after a given threshold), and the decimal
-part of $x^n$ corresponds to the one of $x$ ``as far as required''.
-To illustrate this fact, a comparison between $D$ and the Euclidian distance is
-given Figure \ref{fig:comparaison de distances}. These illustrations show that
-$D$ is richer and more refined than the Euclidian distance, and thus is more
-precise.
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[Function $x \to dist(x;1,234) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad
-  \subfigure[Function $x \to dist(x;3) $ on the interval
-$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}}
-\end{center}
-\caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).}
-\label{fig:comparaison de distances}
-\end{figure}
-
-
-
-
-\subsubsection{The semiconjugacy}
-
-It is now possible to define a topological semiconjugacy between $\mathcal{X}$
-and an interval of $\mathds{R}$:
-
-\begin{theorem}
-Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on
-$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow:
-\begin{equation*}
-\begin{CD}
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>>
-\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\
-    @V{\varphi}VV                    @VV{\varphi}V\\
-\left( ~\big[ 0, 2^{10} \big[, D~\right)  @>>g> \left(~\big[ 0, 2^{10} \big[,
-D~\right)
-\end{CD}
-\end{equation*}
-\end{theorem}
-
-\begin{proof}
-$\varphi$ has been constructed in order to be continuous and onto.
-\end{proof}
-
-In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N}
-\big[$.
-
-
-
-
-
-
-\subsection{Study of the chaotic iterations described as a real function}
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad
-  \subfigure[ICs on the interval
-$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\
-  \subfigure[ICs on the interval
-$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad
-  \subfigure[ICs on the interval
-$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}}
-\end{center}
-\caption{Representation of the chaotic iterations.}
-\label{fig:ICs}
-\end{figure}
-
-
-
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad
-  \subfigure[ICs on the interval
-$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}}
-\end{center}
-\caption{ICs on small intervals.}
-\label{fig:ICs2}
-\end{figure}
-
-\begin{figure}[t]
-\begin{center}
-  \subfigure[ICs on the interval
-$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad
-  \subfigure[ICs on the interval 
-$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad
-\end{center}
-\caption{General aspect of the chaotic iterations.}
-\label{fig:ICs3}
-\end{figure}
-
-
-We have written a Python program to represent the chaotic iterations with the
-vectorial negation on the real line $\mathds{R}$. Various representations of
-these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}.
-It can be remarked that the function $g$ is a piecewise linear function: it is
-linear on each interval having the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its
-slope is equal to 10. Let us justify these claims:
-
-\begin{proposition}
-\label{Prop:derivabilite des ICs}
-Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on
-$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{
-\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$.
-
-Furthermore, on each interval of the form $\left[ \dfrac{n}{10},
-\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$,
-$g$ is a linear function, having a slope equal to 10: $\forall x \notin I,
-g'(x)=10$.
-\end{proposition}
-
-
-\begin{proof}
-Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket
-0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral
-prat $e$ and the same decimal part $s^0$: on the set $I_n$,  functions $e(x)$
-and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all
-the images $g(x)$ of these points $x$:
-\begin{itemize}
-\item Have the same integral part, which is $e$, except probably the bit number
-$s^0$. In other words, this integer has approximately the same binary
-decomposition than $e$, the sole exception being the digit $s^0$ (this number is
-then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$,
-\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$).
-\item A shift to the left has been applied to the decimal part $y$, losing by
-doing so the common first digit $s^0$. In other words, $y$ has been mapped into
-$10\times y - s^0$.
-\end{itemize}
-To sum up, the action of $g$ on the points of $I$ is as follows: first, make a
-multiplication by 10, and second, add the same constant to each term, which is
-$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$.
-\end{proof}
-
-\begin{remark}
-Finally, chaotic iterations are elements of the large family of functions that
-are both chaotic and piecewise linear (like the tent map).
-\end{remark}
-
-
-
-\subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$}
-
-The two propositions bellow allow to compare our two distances on $\big[ 0,
-2^\mathsf{N} \big[$:
+Intuitively, it means that there is no polynomial time algorithm that can
+distinguish a perfect uniform random generator from $G$ with a non
+negligible probability. The interested reader is referred
+to~\cite[chapter~3]{Goldreich} for more information. Note that it is
+quite easily possible to change the function $\ell$ into any polynomial
+function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
+
+The generation schema developed in (\ref{equation Oplus}) is based on a
+pseudo-random generator. Let $H$ be a cryptographic PRNG. We may assume,
+without loss of generality, that for any string $S_0$ of size $N$, the size
+of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
+Let $S_1,\ldots,S_k$ be the 
+strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concatenation of
+the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus})
+is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string
+$(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots
+(x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$. 
+We claim now that if this PRNG is secure,
+then the new one is secure too.
 
 \begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, D~\right)$ is not continuous. 
+If $H$ is a secure cryptographic PRNG, then $X$ is a secure cryptographic
+PRNG too.
 \end{proposition}
 
 \begin{proof}
-The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is
-such that:
-\begin{itemize}
-\item $\Delta (x^n,2) \to 0.$
-\item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0.
-\end{itemize}
-
-The sequential characterization of the continuity concludes the demonstration.
-\end{proof}
-
-
-
-A contrario:
+The proposition is proved by contraposition. Assume that $X$ is not
+secure. By Definition, there exists a polynomial time probabilistic
+algorithm $D$, a positive polynomial $p$, such that for all $k_0$ there exists
+$N\geq \frac{k_0}{2}$ satisfying 
+$$| \mathrm{Pr}[D(X(U_{2N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)}.$$
+We describe a new probabilistic algorithm $D^\prime$ on an input $w$ of size
+$kN$:
+\begin{enumerate}
+\item Decompose $w$ into $w=w_1\ldots w_{k}$, where each $w_i$ has size $N$.
+\item Pick a string $y$ of size $N$ uniformly at random.
+\item Compute $z=(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
+  \bigoplus_{i=1}^{i=k} w_i).$
+\item Return $D(z)$.
+\end{enumerate}
+
+
+Consider  for each $y\in \mathbb{B}^{kN}$ the function $\varphi_{y}$
+from $\mathbb{B}^{kN}$ into $\mathbb{B}^{kN}$ mapping $w=w_1\ldots w_k$
+(each $w_i$ has length $N$) to 
+$(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y
+  \bigoplus_{i=1}^{i=k_1} w_i).$ By construction, one has for every $w$,
+\begin{equation}\label{PCH-1}
+D^\prime(w)=D(\varphi_y(w)),
+\end{equation}
+where $y$ is randomly generated. 
+Moreover, for each $y$, $\varphi_{y}$ is injective: if 
+$(y\oplus w_1)(y\oplus w_1\oplus w_2)\ldots (y\bigoplus_{i=1}^{i=k_1}
+w_i)=(y\oplus w_1^\prime)(y\oplus w_1^\prime\oplus w_2^\prime)\ldots
+(y\bigoplus_{i=1}^{i=k} w_i^\prime)$, then for every $1\leq j\leq k$,
+$y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows,
+by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$
+is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}),
+one has
+\begin{equation}\label{PCH-2}
+\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1].
+\end{equation}
 
-\begin{proposition}
-Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0,
-2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. 
-\end{proposition}
+Now, using (\ref{PCH-1}) again, one has  for every $x$,
+\begin{equation}\label{PCH-3}
+D^\prime(H(x))=D(\varphi_y(H(x))),
+\end{equation}
+where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$,
+thus
+\begin{equation}\label{PCH-3}
+D^\prime(H(x))=D(yx),
+\end{equation}
+where $y$ is randomly generated. 
+It follows that 
 
-\begin{proof}
-If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given
-threshold, because $D_e$ only returns integers. So, after this threshold, the
-integral parts of all the $x^n$ are equal to the integral part of $x$. 
-
-Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k
-\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This
-means that for all $k$, an index $N_k$ can be found such that, $\forall n
-\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the
-digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the
-result.
+\begin{equation}\label{PCH-4}
+\mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1].
+\end{equation}
+ From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that
+there exist a polynomial time probabilistic
+algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists
+$N\geq \frac{k_0}{2}$ satisfying 
+$$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$
+proving that $H$ is not secure, a contradiction. 
 \end{proof}
 
-The conclusion of these propositions is that the proposed metric is more precise
-than the Euclidian distance, that is:
-
-\begin{corollary}
-$D$ is finer than the Euclidian distance $\Delta$.
-\end{corollary}
-
-This corollary can be reformulated as follows:
-
-\begin{itemize}
-\item The topology produced by $\Delta$ is a subset of the topology produced by
-$D$.
-\item $D$ has more open sets than $\Delta$.
-\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than
-to converge with the one inherited by $\Delta$, which is denoted here by
-$\tau_\Delta$.
-\end{itemize}
-
-
-\subsection{Chaos of the chaotic iterations on $\mathds{R}$}
-\label{chpt:Chaos des itérations chaotiques sur R}
 
 
 
-\subsubsection{Chaos according to Devaney}
 
-We have recalled previously that the chaotic iterations $\left(\Go,
-\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We
-can deduce that they are chaotic on $\mathds{R}$ too, when considering the order
-topology, because:
-\begin{itemize}
-\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10}
-\big[_D\right)$ are semiconjugate by $\varphi$,
-\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic
-according to Devaney, because the semiconjugacy preserve this character.
-\item But the topology generated by $D$ is finer than the topology generated by
-the Euclidian distance $\Delta$ -- which is the order topology.
-\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the
-chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order
-topology on $\mathds{R}$.
-\end{itemize}
-
-This result can be formulated as follows.
-
-\begin{theorem}
-\label{th:IC et topologie de l'ordre}
-The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the
-Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the
-order topology.
-\end{theorem}
-
-Indeed this result is weaker than the theorem establishing the chaos for the
-finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre}
-still remains important. Indeed, we have studied in our previous works a set
-different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$),
-in order to be as close as possible from the computer: the properties of
-disorder proved theoretically will then be preserved when computing. However, we
-could wonder whether this change does not lead to a disorder of a lower quality.
-In other words, have we replaced a situation of a good disorder lost when
-computing, to another situation of a disorder preserved but of bad quality.
-Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary.
+\section{Conclusion}
 
 
+In  this  paper  we have  presented  a  new  class  of  PRNGs based  on  chaotic
+iterations. We have proven that these PRNGs are chaotic in the sense of Devenay.
+We also propose a PRNG cryptographically secure and its implementation on GPU.
 
+An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
+generate   a  huge   number   of  pseudo-random   numbers   per  second   (about
+20Gsample/s). This PRNG succeeds to pass the hardest batteries of TestU01.
 
+In future  work we plan to  extend this work  for parallel PRNG for  clusters or
+grid computing. We also plan to improve  the BBS version in order to succeed all
+the tests of TestU01.
 
 
 
-\section{Conclusion}
-\bibliographystyle{plain}
+\bibliographystyle{plain} 
 \bibliography{mabase}
 \end{document}