-Intuitively, it means that there is no polynomial time algorithm that can
-distinguish a perfect uniform random generator from $G$ with a non
-negligible probability.
-\begin{color}{red}
- An equivalent formulation of this well-known
-security property means that it is possible
-\emph{in practice} to predict the next bit of
-the generator, knowing all the previously
-produced ones.
-\end{color}
-The interested reader is referred
-to~\cite[chapter~3]{Goldreich} for more information. Note that it is
-quite easily possible to change the function $\ell$ into any polynomial
-function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
+Intuitively, it means that there is no polynomial time algorithm that can
+distinguish a perfect uniform random generator from $G$ with a non negligible
+probability. An equivalent formulation of this well-known security property
+means that it is possible \emph{in practice} to predict the next bit of the
+generator, knowing all the previously produced ones. The interested reader is
+referred to~\cite[chapter~3]{Goldreich} for more information. Note that it is
+quite easily possible to change the function $\ell$ into any polynomial function
+$\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.