\begin{document}
\author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe
-Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
+Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}}
\maketitle
denoted by $uv$.
In a cryptographic context, a pseudorandom generator is a deterministic
algorithm $G$ transforming strings into strings and such that, for any
-seed $k$ of length $k$, $G(k)$ (the output of $G$ on the input $k$) has size
-$\ell_G(k)$ with $\ell_G(k)>k$.
+seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size
+$\ell_G(m)$ with $\ell_G(m)>m$.
The notion of {\it secure} PRNGs can now be defined as follows.
\begin{definition}
A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time
algorithm $D$, for any positive polynomial $p$, and for all sufficiently
-large $k$'s,
-$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)})=1]|< \frac{1}{p(k)},$$
+large $m$'s,
+$$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$
where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the
-probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the
+probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the
internal coin tosses of $D$.
\end{definition}
negligible probability. The interested reader is referred
to~\cite[chapter~3]{Goldreich} for more information. Note that it is
quite easily possible to change the function $\ell$ into any polynomial
-function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
+function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}.
The generation schema developed in (\ref{equation Oplus}) is based on a
pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,