%\documentclass{article}
-\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
+%\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran}
+\documentclass[preprint,12pt]{elsarticle}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{fullpage}
Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}}
-\IEEEcompsoctitleabstractindextext{
+%\IEEEcompsoctitleabstractindextext{
\begin{abstract}
In this paper we present a new pseudorandom number generator (PRNG) on
graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It
\end{abstract}
-}
+%}
\maketitle
-\IEEEdisplaynotcompsoctitleabstractindextext
-\IEEEpeerreviewmaketitle
+%\IEEEdisplaynotcompsoctitleabstractindextext
+%\IEEEpeerreviewmaketitle
\section{Introduction}
\begin{table}
-\renewcommand{\arraystretch}{1.3}
+%\renewcommand{\arraystretch}{1}
\caption{TestU01 Statistical Test Failures}
\label{TestU011}
\centering
\begin{table}
-\renewcommand{\arraystretch}{1.3}
+%\renewcommand{\arraystretch}{1}
\caption{TestU01 Statistical Test Failures for Old CI algorithms ($\mathsf{N}=4$)}
\label{TestU01 for Old CI}
\centering
\label{Results and discussion}
\begin{table*}
-\renewcommand{\arraystretch}{1.3}
+%\renewcommand{\arraystretch}{1}
\caption{NIST and DieHARD tests suite passing rates for PRNGs without CI}
\label{NIST and DieHARD tests suite passing rate the for PRNGs without CI}
\centering
\begin{table*}
-\renewcommand{\arraystretch}{1.3}
+%\renewcommand{\arraystretch}{1.3}
\caption{NIST and DieHARD tests suite passing rates for PRNGs with CI}
\label{NIST and DieHARD tests suite passing rate the for single CIPRNGs}
\centering
using chaotic iterations on defective generators.
\begin{table*}
-\renewcommand{\arraystretch}{1.3}
+%\renewcommand{\arraystretch}{1.3}
\caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries}
\label{threshold}
\centering
\begin{figure}[htbp]
\begin{center}
- \includegraphics[width=\columnwidth]{curve_time_xorlike_gpu.pdf}
+ \includegraphics[scale=0.7]{curve_time_xorlike_gpu.pdf}
\end{center}
\caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG}
\label{fig:time_xorlike_gpu}
\begin{figure}[htbp]
\begin{center}
- \includegraphics[width=\columnwidth]{curve_time_bbs_gpu.pdf}
+ \includegraphics[scale=0.7]{curve_time_bbs_gpu.pdf}
\end{center}
\caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG}
\label{fig:time_bbs_gpu}
To encrypt his message, Bob will compute
%%RAPH : ici, j'ai mis un simple $
-%\begin{equation}
-$c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$
-$ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$
-%%\end{equation}
-instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$.
+\begin{equation*}
+c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.
+ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)
+\end{equation*}
+instead of $$\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$$.
The same decryption stage as in Blum-Goldwasser leads to the sequence
-$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$.
+$$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$$.
Thus, with a simple use of $S^0$, Alice can obtain the plaintext.
By doing so, the proposed generator is used in place of BBS, leading to
the inheritance of all the properties presented in this paper.