+impracticable: being cryptographically secure is not a
+question of key size.
+
+
+Most theoretical cryptographic definitions are somehow an extension of the
+notion of one-way function. Intuitively a one way function is a function
+ easy to compute but which is practically impossible to
+inverse (i.e. from $f(x)$ it is not possible to compute $x$).
+Since the size of $x$ is known, it is always possible to use a brute force
+attack, that is computing $f(y)$ for all $y$'s of the good size until
+$f(y)\neq f(x)$. Informally, if a function is one-way, it means that every
+algorithm that can compute $x$ from $f(x)$ with a good probability requires
+a similar amount of time to the brute force attack. It is important to
+note that if the size of $x$ is small, then the brute force attack works in
+practice. The theoretical security properties do not guarantee that the system
+cannot be broken, it guarantees that if the keys are large enough, then the
+system still works (computing $f(x)$ can be done, even if $x$ is large), and
+cannot be broken in a reasonable time. The theoretical definition of a
+secure PRNG is more technical than the one on one-way function but the
+ideas are the same: a cryptographically secured PRNG can be broken
+ by a brute force prediction, but not in a reasonable time if the
+ keys/seeds are large enough.
+
+
+Nevertheless, new arguments have been added in several places of the revision of
+our paper, concerning more concrete and practical aspects of security, like the
+$(T,\varepsilon)-$security notion of Section 8.2. Such a practical evaluation
+has not yet been performed for the GPU version of our PRNG, and the reviewer is
+right to think that these aspects are fundamental to determine whether the
+proposed PRNG can or cannot face the attacks. A similar formula to what has been
+computed for the BBS (as in Section 8.2) must be found in future work, to
+measure the amount of time need by an attacker to break the proposed generator when
+considering the parameters we have chosen (this computation is a difficult
+task). Sentences have been added in several places (like at the end of Section
+9.1) summarizing this.