X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/00f33bfae729c2256b647502d7cbd542ba0892e9..3010272fc200ffae4e9223ba48c5f3caf05a4256:/prng_gpu.tex?ds=sidebyside diff --git a/prng_gpu.tex b/prng_gpu.tex index ed7e927..55fc756 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -1,4 +1,5 @@ -\documentclass{article} +%\documentclass{article} +\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{fullpage} @@ -38,10 +39,10 @@ \begin{document} \author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe -Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}} +Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}} -\maketitle +\IEEEcompsoctitleabstractindextext{ \begin{abstract} In this paper we present a new pseudorandom number generator (PRNG) on graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It @@ -56,6 +57,13 @@ A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is fin \end{abstract} +} + +\maketitle + +\IEEEdisplaynotcompsoctitleabstractindextext +\IEEEpeerreviewmaketitle + \section{Introduction} @@ -135,7 +143,7 @@ allows us to generate almost 20 billion of pseudorandom numbers per second. Furthermore, we show that the proposed post-treatment preserves the cryptographical security of the inputted PRNG, when this last has such a property. -Last, but not least, we propose a rewritting of the Blum-Goldwasser asymmetric +Last, but not least, we propose a rewriting of the Blum-Goldwasser asymmetric key encryption protocol by using the proposed method. The remainder of this paper is organized as follows. In Section~\ref{section:related @@ -216,7 +224,10 @@ We can finally remark that, to the best of our knowledge, no GPU implementation \label{section:BASIC RECALLS} This section is devoted to basic definitions and terminologies in the fields of -topological chaos and chaotic iterations. +topological chaos and chaotic iterations. We assume the reader is familiar +with basic notions on topology (see for instance~\cite{Devaney}). + + \subsection{Devaney's Chaotic Dynamical Systems} In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ @@ -229,7 +240,7 @@ Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f : \mathcal{X} \rightarrow \mathcal{X}$. \begin{definition} -$f$ is said to be \emph{topologically transitive} if, for any pair of open sets +The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq \varnothing$. \end{definition} @@ -248,7 +259,7 @@ necessarily the same period). \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}] -$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and +The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. \end{definition} @@ -256,12 +267,12 @@ The chaos property is strongly linked to the notion of ``sensitivity'', defined on a metric space $(\mathcal{X},d)$ by: \begin{definition} -\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions} +\label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions} if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that $d\left(f^{n}(x), f^{n}(y)\right) >\delta $. -$\delta$ is called the \emph{constant of sensitivity} of $f$. +The constant $\delta$ is called the \emph{constant of sensitivity} of $f$. \end{definition} Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is @@ -321,11 +332,13 @@ are continuous. For further explanations, see, e.g., \cite{guyeux10}. Let $\delta $ be the \emph{discrete Boolean metric}, $\delta (x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function: +%%RAPH : ici j'ai coupé la dernière ligne en 2, c'est moche mais bon \begin{equation} \begin{array}{lrll} F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} & \longrightarrow & \mathds{B}^{\mathsf{N}} \\ -& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+f(E)_{k}.\overline{\delta +& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ \right.\\ +& & & \left. f(E)_{k}.\overline{\delta (k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},% \end{array}% \end{equation}% @@ -467,8 +480,9 @@ generator taken alone. Furthermore, our generator possesses various chaos properties that none of the generators used as input present. + \begin{algorithm}[h!] -%\begin{scriptsize} +\begin{small} \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ ($n$ bits)} \KwOut{a configuration $x$ ($n$ bits)} @@ -480,12 +494,16 @@ $s\leftarrow{\textit{XORshift}(n)}$\; $x\leftarrow{F_f(s,x)}$\; } return $x$\; -%\end{scriptsize} +\end{small} \caption{PRNG with chaotic functions} \label{CI Algorithm} \end{algorithm} + + + \begin{algorithm}[h!] +\begin{small} \KwIn{the internal configuration $z$ (a 32-bit word)} \KwOut{$y$ (a 32-bit word)} $z\leftarrow{z\oplus{(z\ll13)}}$\; @@ -493,7 +511,7 @@ $z\leftarrow{z\oplus{(z\gg17)}}$\; $z\leftarrow{z\oplus{(z\ll5)}}$\; $y\leftarrow{z}$\; return $y$\; -\medskip +\end{small} \caption{An arbitrary round of \textit{XORshift} algorithm} \label{XORshift} \end{algorithm} @@ -536,7 +554,7 @@ x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N \label{equation Oplus} \end{equation} where $\oplus$ is for the bitwise exclusive or between two integers. -This rewritting can be understood as follows. The $n-$th term $S^n$ of the +This rewriting can be understood as follows. The $n-$th term $S^n$ of the sequence $S$, which is an integer of $\mathsf{N}$ binary digits, presents the list of cells to update in the state $x^n$ of the system (represented as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th @@ -605,12 +623,13 @@ Let us introduce the following function: where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$. Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function: +%%RAPH : j'ai coupé la dernière ligne en 2, c'est moche \begin{equation} \begin{array}{lrll} F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} & \longrightarrow & \mathds{B}^{\mathsf{N}} \\ -& (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi -(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},% +& (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+\right.\\ +& & &\left.f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},% \end{array}% \end{equation}% where + and . are the Boolean addition and product operations, and $\overline{x}$ @@ -622,7 +641,7 @@ Consider the phase space: \end{equation} \noindent and the map defined on $\mathcal{X}$: \begin{equation} -G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf} +G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant... \end{equation} \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in @@ -649,17 +668,21 @@ Let us introduce: d(X,Y)=d_{e}(E,\check{E})+d_{s}(S,\check{S}), \label{nouveau d} \end{equation} -\noindent where -\begin{equation} -\left\{ -\begin{array}{lll} -\displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}% -}\delta (E_{k},\check{E}_{k})}\textrm{ is once more the Hamming distance}, \\ -\displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}% -\sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.% -\end{array}% -\right. -\end{equation} +\noindent where $ \displaystyle{d_{e}(E,\check{E})} = \displaystyle{\sum_{k=1}^{\mathsf{N}% + }\delta (E_{k},\check{E}_{k})}$ is once more the Hamming distance, and +$ \displaystyle{d_{s}(S,\check{S})} = \displaystyle{\dfrac{9}{\mathsf{N}}% + \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}$, +%%RAPH : ici, j'ai supprimé tous les sauts à la ligne +%% \begin{equation} +%% \left\{ +%% \begin{array}{lll} +%% \displaystyle{d_{e}(E,\check{E})} & = & \displaystyle{\sum_{k=1}^{\mathsf{N}% +%% }\delta (E_{k},\check{E}_{k})} \textrm{ is once more the Hamming distance}, \\ +%% \displaystyle{d_{s}(S,\check{S})} & = & \displaystyle{\dfrac{9}{\mathsf{N}}% +%% \sum_{k=1}^{\infty }\dfrac{|S^k\Delta {S}^k|}{10^{k}}}.% +%% \end{array}% +%% \right. +%% \end{equation} where $|X|$ is the cardinality of a set $X$ and $A\Delta B$ is for the symmetric difference, defined for sets A, B as $A\,\Delta\,B = (A \setminus B) \cup (B \setminus A)$. @@ -740,12 +763,14 @@ G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $% 10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline In conclusion, -$$ +%%RAPH : ici j'ai rajouté une ligne +\begin{flushleft}$$ \forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}% -,\forall n\geqslant N_{0}, - d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right) +,\forall n\geqslant N_{0},$$ +$$ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right) \leqslant \varepsilon . $$ +\end{flushleft} $G_{f}$ is consequently continuous. \end{proof} @@ -785,7 +810,11 @@ where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties claimed in the lemma. \end{proof} +<<<<<<< HEAD +We can now prove the Theorem~\ref{t:chaos des general}. +======= We can now prove Theorem~\ref{t:chaos des general}... +>>>>>>> e55d237aba022a66cc2d7650d295b29169878f45 \begin{proof}[Theorem~\ref{t:chaos des general}] Firstly, strong transitivity implies transitivity. @@ -803,8 +832,10 @@ and $t_2\in\mathds{N}$ such that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$. Consider the strategy $\tilde S$ that alternates the first $t_1$ terms -of $S$ and the first $t_2$ terms of $S'$: $$\tilde -S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It +of $S$ and the first $t_2$ terms of $S'$: +%%RAPH : j'ai coupé la ligne en 2 +$$\tilde +S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,$$$$\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after $t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic point. Since $\tilde S_t=S_t$ for $tk$. +seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size +$\ell_G(m)$ with $\ell_G(m)>m$. The notion of {\it secure} PRNGs can now be defined as follows. \begin{definition} A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time algorithm $D$, for any positive polynomial $p$, and for all sufficiently -large $k$'s, -$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)})=1]|< \frac{1}{p(k)},$$ +large $m$'s, +$$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$ where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the -probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the +probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the internal coin tosses of $D$. \end{definition} @@ -1147,7 +1184,7 @@ distinguish a perfect uniform random generator from $G$ with a non negligible probability. The interested reader is referred to~\cite[chapter~3]{Goldreich} for more information. Note that it is quite easily possible to change the function $\ell$ into any polynomial -function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}. +function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}. The generation schema developed in (\ref{equation Oplus}) is based on a pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume, @@ -1158,7 +1195,7 @@ strings of length $N$ such that $H(S_0)=S_1 \ldots S_k$ ($H(S_0)$ is the concate the $S_i$'s). The cryptographic PRNG $X$ defined in (\ref{equation Oplus}) is the algorithm mapping any string of length $2N$ $x_0S_0$ into the string $(x_0\oplus S_0 \oplus S_1)(x_0\oplus S_0 \oplus S_1\oplus S_2)\ldots -(x_o\bigoplus_{i=0}^{i=k}S_i)$. Particularly one has $\ell_{X}(2N)=kN=\ell_H(N)$. +(x_o\bigoplus_{i=0}^{i=k}S_i)$. One in particular has $\ell_{X}(2N)=kN=\ell_H(N)$. We claim now that if this PRNG is secure, then the new one is secure too. @@ -1202,8 +1239,10 @@ $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows, by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$ is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}), one has +$\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and, +therefore, \begin{equation}\label{PCH-2} -\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1]. +\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1]. \end{equation} Now, using (\ref{PCH-1}) again, one has for every $x$, @@ -1212,7 +1251,7 @@ D^\prime(H(x))=D(\varphi_y(H(x))), \end{equation} where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$, thus -\begin{equation}\label{PCH-3} +\begin{equation}%\label{PCH-3} %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant D^\prime(H(x))=D(yx), \end{equation} where $y$ is randomly generated. @@ -1222,11 +1261,11 @@ It follows that \mathrm{Pr}[D^\prime(H(U_{N}))=1]=\mathrm{Pr}[D(U_{2N})=1]. \end{equation} From (\ref{PCH-2}) and (\ref{PCH-4}), one can deduce that -there exist a polynomial time probabilistic +there exists a polynomial time probabilistic algorithm $D^\prime$, a positive polynomial $p$, such that for all $k_0$ there exists $N\geq \frac{k_0}{2}$ satisfying $$| \mathrm{Pr}[D(H(U_{N}))=1]-\mathrm{Pr}[D(U_{kN}=1]|\geq \frac{1}{p(2N)},$$ -proving that $H$ is not secure, a contradiction. +proving that $H$ is not secure, which is a contradiction. \end{proof} @@ -1255,21 +1294,21 @@ lesser than $2^{16}$. So in practice we can choose prime numbers around indistinguishable bits is lesser than or equals to $log_2(log_2(M))$). In other words, to generate a 32-bits number, we need to use 8 times the BBS algorithm with possibly different combinations of $M$. This -approach is not sufficient to be able to pass all the TestU01, +approach is not sufficient to be able to pass all the tests of TestU01, as small values of $M$ for the BBS lead to - small periods. So, in order to add randomness we proceed with + small periods. So, in order to add randomness we have proceeded with the followings modifications. \begin{itemize} \item Firstly, we define 16 arrangement arrays instead of 2 (as described in Algorithm \ref{algo:gpu_kernel2}), but only 2 of them are used at each call of -the PRNG kernels. In practice, the selection of combinations +the PRNG kernels. In practice, the selection of combination arrays to be used is different for all the threads. It is determined by using the three last bits of two internal variables used by BBS. %This approach adds more randomness. In Algorithm~\ref{algo:bbs_gpu}, character \& is for the bitwise AND. Thus using \&7 with a number -gives the last 3 bits, providing so a number between 0 and 7. +gives the last 3 bits, thus providing a number between 0 and 7. \item Secondly, after the generation of the 8 BBS numbers for each thread, we have a 32-bits number whose period is possibly quite small. So @@ -1277,7 +1316,7 @@ to add randomness, we generate 4 more BBS numbers to shift the 32-bits numbers, and add up to 6 new bits. This improvement is described in Algorithm~\ref{algo:bbs_gpu}. In practice, the last 2 bits of the first new BBS number are used to make a left shift of at most -3 bits. The last 3 bits of the second new BBS number are add to the +3 bits. The last 3 bits of the second new BBS number are added to the strategy whatever the value of the first left shift. The third and the fourth new BBS numbers are used similarly to apply a new left shift and add 3 new bits. @@ -1290,7 +1329,7 @@ variable for BBS number 8 is stored in place 1. \end{itemize} \begin{algorithm} - +\begin{small} \KwIn{InternalVarBBSArray: array with internal variables of the 8 BBS in global memory\; NumThreads: Number of threads\; @@ -1326,7 +1365,7 @@ array\_shift[4]=\{0,1,3,7\}\; } store internal variables in InternalVarXorLikeArray[threadId] using a rotation\; } - +\end{small} \caption{main kernel for the BBS based PRNG GPU} \label{algo:bbs_gpu} \end{algorithm} @@ -1344,7 +1383,7 @@ variability. In these operations, we make twice a left shift of $t$ of \emph{at most} 3 bits, represented by \texttt{shift} in the algorithm, and we put \emph{exactly} the \texttt{shift} last bits from a BBS into the \texttt{shift} last bits of $t$. For this, an array named \texttt{array\_shift}, containing the -correspondance between the shift and the number obtained with \texttt{shift} 1 +correspondence between the shift and the number obtained with \texttt{shift} 1 to make the \texttt{and} operation is used. For example, with a left shift of 0, we make an and operation with 0, with a left shift of 3, we make an and operation with 7 (represented by 111 in binary mode). @@ -1401,7 +1440,7 @@ When Alice receives $\left[(c_0, \dots, c_{L-1}), y\right]$, she can recover $m$ \item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$. \item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$. \item She recomputes the bit-vector $b$ by using BBS and $x_0$. -\item Alice computes finally the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus b$. +\item Alice finally computes the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus b$. \end{enumerate} @@ -1414,14 +1453,16 @@ Alice will pick randomly $S^0$ in $\llbracket 0, 2^{\mathsf{N}-1}\rrbracket$ too her new public key will be $(S^0, N)$. To encrypt his message, Bob will compute -\begin{equation} -c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right) -\end{equation} +%%RAPH : ici, j'ai mis un simple $ +%\begin{equation} +$c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$ +$ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$ +%%\end{equation} instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$. The same decryption stage as in Blum-Goldwasser leads to the sequence $\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$. -Thus, with a simple use of $S^0$, Alice can obtained the plaintext. +Thus, with a simple use of $S^0$, Alice can obtain the plaintext. By doing so, the proposed generator is used in place of BBS, leading to the inheritance of all the properties presented in this paper. @@ -1432,7 +1473,7 @@ In this paper, a formerly proposed PRNG based on chaotic iterations has been generalized to improve its speed. It has been proven to be chaotic according to Devaney. Efficient implementations on GPU using xor-like PRNGs as input generators -shown that a very large quantity of pseudorandom numbers can be generated per second (about +have shown that a very large quantity of pseudorandom numbers can be generated per second (about 20Gsamples/s), and that these proposed PRNGs succeed to pass the hardest battery in TestU01, namely the BigCrush. Furthermore, we have shown that when the inputted generator is cryptographically