X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/0cafd2bf1c7bf4758d8f1aa902d08d880419b67d..cdea906ee17a7138b88a76de59946faec4d948ce:/prng_gpu.tex?ds=inline diff --git a/prng_gpu.tex b/prng_gpu.tex index 74b78a9..5ebe0ef 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -996,9 +996,9 @@ tab1, tab2: Arrays containing combinations of size combination\_size\;} o2 = threadIdx-offset+tab2[offset]\; \For{i=1 to n} { t=xor-like()\; - t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\; + t=t $\hat{ }$ shmem[o1] $\hat{ }$ shmem[o2]\; shared\_mem[threadId]=t\; - x = x $\oplus$ t\; + x = x $\hat{ }$ t\; store the new PRNG in NewNb[NumThreads*threadId+i]\; } @@ -1305,9 +1305,9 @@ tab: 2D Arrays containing 16 combinations (in first dimension) of size combinat t|=BBS1(bbs1)\&7\; t<<=BBS7(bbs7)\&3\; t|=BBS2(bbs2)\&7\; - t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\; + t=t $\hat{ }$ shmem[o1] $\hat{ }$ shmem[o2]\; shared\_mem[threadId]=t\; - x = x $\oplus$ t\; + x = x $\hat{ }$ t\; store the new PRNG in NewNb[NumThreads*threadId+i]\; } @@ -1326,8 +1326,51 @@ been used. -\subsection{A Secure Asymetric Cryptosystem} +\subsection{A Cryptographically Secure and Chaotic Asymetric Cryptosystem} +\subsubsection{Recalls of the Blum-Goldwasser Probabilistic Cryptosystem} + +The Blum-Goldwasser cryptosystem is a cryptographically secure asymmetric key encryption algorithm +proposed in 1984~\cite{Blum:1985:EPP:19478.19501}. The encryption algorithm +implements an XOR-based stream cipher using the BBS PRNG, in order to generate +the keystream. Decryption is done by obtaining the initial seed thanks to +the final state of the BBS generator and the secret key, thus leading to the + reconstruction of the keystream. + +The key generation consists in generating two prime numbers $(p,q)$, +randomly and independently of each other, that are + congruent to 3 mod 4, and to compute the modulus $N=pq$. +The public key is $N$, whereas the secret key is the factorization $(p,q)$. + + +Suppose Bob wishes to send a string $m=(m_0, \dots, m_{L-1})$ of $L$ bits to Alice: +\begin{enumerate} +\item Bob picks an integer $r$ randomly in the interval $[1,N$ and computes $x_0 = r^2~mod~N$. +\item He uses the BBS to generate the keystream of $L$ pseudorandom bits $(b_0, \dots, b_{L-1})$, as follows. For $i=0$ to $L-1$, +\begin{itemize} +\item $i=0$. +\item While $i \leqslant L-1$: +\begin{itemize} +\item Set $b_i$ equal to the least-significant\footnote{BBS can securely output up to O(loglogN) of the least-significant bits of xi during each round.} bit of $x_i$, +\item $i=i+1$, +\item $x_i = (x_{i-1})^2~mod~N.$ +\end{itemize} +\end{itemize} +\item The ciphertext is computed by XORing the plaintext bits $m$ with the keystream: $ c = (c_0, \dots, c_{L-1}) = m \oplus b$. +\end{enumerate} +The ciphertext is $(c, y)$, where $y=x_{0}^{2^{L}}~mod~N.$. + + +When Alice receives $(c_0, \dots, c_{L-1}), y$, she can recover $m$ as follows: +\begin{enumerate} +\item Using the secret key $(p,q)$, she computes $r_p = y^{((p+1)/4)^{L}}~mod~p$ and $r_q = y^{((q+1)/4)^{L}}~mod~q$. +\item The initial seed can be obtained using the following procedure: $x_0=q(q^{-1}~{mod}~p)r_p + p(p^{-1}~{mod}~q)r_q~{mod}~N$ +\item Recompute the bit-vector $b$ by using BBS and $x_0$. +\item Compute finally the plaintext by XORing the keystream with the ciphertext: $ m = c \oplus b$. +\end{enumerate} + + +\subsubsection{Proposal of a new Asymmetric Cryptosystem Adapted from Blum-Goldwasser}