X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/12410996f49b94978103d0ba32d17f85c89fa51a..a595bc795f31e05fc7fcc8415e1549bdda84b076:/prng_gpu.tex diff --git a/prng_gpu.tex b/prng_gpu.tex index 082c379..730b620 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -7,6 +7,8 @@ \usepackage{amscd} \usepackage{moreverb} \usepackage{commath} +\usepackage{algorithm2e} +\usepackage{listings} \usepackage[standard]{ntheorem} % Pour mathds : les ensembles IR, IN, etc. @@ -34,6 +36,9 @@ \title{Efficient generation of pseudo random numbers based on chaotic iterations on GPU} \begin{document} + +\author{Jacques M. Bahi, Rapha\"{e}l Couturier, and Christophe Guyeux\thanks{Authors in alphabetic order}} + \maketitle \begin{abstract} @@ -44,12 +49,245 @@ This is the abstract Interet des itérations chaotiques pour générer des nombre alea\\ Interet de générer des nombres alea sur GPU +\alert{RC, un petit state-of-the-art sur les PRNGs sur GPU ?} ... -\section{Chaotic iterations} -Présentation des itérations chaotiques +\section{Basic Recalls} +\label{section:BASIC RECALLS} +This section is devoted to basic definitions and terminologies in the fields of topological chaos and chaotic iterations. +\subsection{Devaney's chaotic dynamical systems} + +In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$ denotes the $k^{th}$ composition of a function $f$. Finally, the following notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$. + + +Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f : \mathcal{X} \rightarrow \mathcal{X}$. + +\begin{definition} +$f$ is said to be \emph{topologically transitive} if, for any pair of open sets $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq \varnothing$. +\end{definition} + +\begin{definition} +An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$ if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$ +\end{definition} + +\begin{definition} +$f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$, any neighborhood of $x$ contains at least one periodic point (without necessarily the same period). +\end{definition} + + +\begin{definition} +$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. +\end{definition} + +The chaos property is strongly linked to the notion of ``sensitivity'', defined on a metric space $(\mathcal{X},d)$ by: + +\begin{definition} +\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions} +if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that $d\left(f^{n}(x), f^{n}(y)\right) >\delta $. + +$\delta$ is called the \emph{constant of sensitivity} of $f$. +\end{definition} +Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of sensitive dependence on initial conditions (this property was formerly an element of the definition of chaos). To sum up, quoting Devaney in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the sensitive dependence on initial conditions. It cannot be broken down or simplified into two subsystems which do not interact because of topological transitivity. And in the midst of this random behavior, we nevertheless have an element of regularity''. Fundamentally different behaviors are consequently possible and occur in an unpredictable way. + + + +\subsection{Chaotic iterations} +\label{sec:chaotic iterations} + + +Let us consider a \emph{system} with a finite number $\mathsf{N} \in +\mathds{N}^*$ of elements (or \emph{cells}), so that each cell has a +Boolean \emph{state}. Having $\mathsf{N}$ Boolean values for these + cells leads to the definition of a particular \emph{state of the +system}. A sequence which elements belong to $\llbracket 1;\mathsf{N} +\rrbracket $ is called a \emph{strategy}. The set of all strategies is +denoted by $\mathbb{S}.$ + +\begin{definition} +\label{Def:chaotic iterations} +The set $\mathds{B}$ denoting $\{0,1\}$, let +$f:\mathds{B}^{\mathsf{N}}\longrightarrow \mathds{B}^{\mathsf{N}}$ be +a function and $S\in \mathbb{S}$ be a strategy. The so-called +\emph{chaotic iterations} are defined by $x^0\in +\mathds{B}^{\mathsf{N}}$ and +$$ +\forall n\in \mathds{N}^{\ast }, \forall i\in +\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{ +\begin{array}{ll} + x_i^{n-1} & \text{ if }S^n\neq i \\ + \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i. +\end{array}\right. +$$ +\end{definition} + +In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is +\textquotedblleft iterated\textquotedblright . Note that in a more +general formulation, $S^n$ can be a subset of components and +$\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by +$\left(f(x^{k})\right)_{S^{n}}$, where $k>$32);\\ - x = x\textasciicircum (unsigned int)(t3$>>$32);\\ - x = x\textasciicircum (unsigned int)t2;\\ - x = x\textasciicircum (unsigned int)(t1$>>$32);\\ - x = x\textasciicircum (unsigned int)t3;\\ - return x;\\ -\} -\end{minipage} +%% \begin{figure}[htbp] +%% \begin{center} +%% \fbox{ +%% \begin{minipage}{14cm} +%% unsigned int CIprng() \{\\ +%% static unsigned int x = 123123123;\\ +%% unsigned long t1 = xorshift();\\ +%% unsigned long t2 = xor128();\\ +%% unsigned long t3 = xorwow();\\ +%% x = x\textasciicircum (unsigned int)t1;\\ +%% x = x\textasciicircum (unsigned int)(t2$>>$32);\\ +%% x = x\textasciicircum (unsigned int)(t3$>>$32);\\ +%% x = x\textasciicircum (unsigned int)t2;\\ +%% x = x\textasciicircum (unsigned int)(t1$>>$32);\\ +%% x = x\textasciicircum (unsigned int)t3;\\ +%% return x;\\ +%% \} +%% \end{minipage} +%% } +%% \end{center} +%% \caption{sequential Chaotic Iteration PRNG} +%% \label{algo:seqCIprng} +%% \end{figure} + + + +\lstset{language=C,caption={C code of the sequential chaotic iterations based PRNG},label=algo:seqCIprng} +\begin{lstlisting} +unsigned int CIprng() { + static unsigned int x = 123123123; + unsigned long t1 = xorshift(); + unsigned long t2 = xor128(); + unsigned long t3 = xorwow(); + x = x^(unsigned int)t1; + x = x^(unsigned int)(t2>>32); + x = x^(unsigned int)(t3>>32); + x = x^(unsigned int)t2; + x = x^(unsigned int)(t1>>32); + x = x^(unsigned int)t3; + return x; } -\end{center} -\caption{sequential Chaotic Iteration PRNG} -\label{algo:seqCIprng} -\end{figure} +\end{lstlisting} + -In Figure~\ref{algo:seqCIprng} a sequential version of our chaotic iterations -based PRNG is presented. This version uses three classical 64 bits PRNG: the -\texttt{xorshift}, the \texttt{xor128} and the \texttt{xorwow}. These three -PRNGs are presented in~\cite{Marsaglia2003}. As each PRNG used works with -64-bits and as our PRNG works with 32 bits, the use of \texttt{(unsigned int)} -selects the 32 least significant bits whereas \texttt{(unsigned int)(t3$>>$32)} -selects the 32 most significants bits of the variable \texttt{t}. This version -sucesses the BigCrush of the TestU01 battery [P. L’ecuyer and + + + +In listing~\ref{algo:seqCIprng} a sequential version of our chaotic iterations +based PRNG is presented. This version uses three classical 64-bits PRNG: the +\texttt{xorshift}, the \texttt{xor128} and the \texttt{xorwow}. In the +following, we call them xor-like PRNGSs. These three PRNGs are presented +in~\cite{Marsaglia2003}. As each xor-like PRNG used works with 64-bits and as our PRNG +works with 32-bits, the use of \texttt{(unsigned int)} selects the 32 least +significant bits whereas \texttt{(unsigned int)(t3$>>$32)} selects the 32 most +significants bits of the variable \texttt{t}. So to produce a random number +realizes 6 xor operations with 6 32-bits numbers produced by 3 64-bits PRNG. +This version successes the BigCrush of the TestU01 battery [P. L’ecuyer and R. Simard. Testu01]. \section{Efficient prng based on chaotic iterations on GPU} -On parle du passage du sequentiel au GPU +In order to benefit from computing power of GPU, a program needs to define +independent blocks of threads which can be computed simultaneously. In general, +the larger the number of threads is, the more local memory is used and the less +branching instructions are used (if, while, ...), the better performance is +obtained on GPU. So with algorithm \ref{algo:seqCIprng} presented in the +previous section, it is possible to build a similar program which computes PRNG +on GPU. The principe consists in assigning the computation of a PRNG as in +sequential to each thread of the GPU. Of course, it is essential that the three +xor-like PRNGs used for our computation have different parameters. So we chose +them randomly with another PRNG. As the initialisation is performed by the CPU, +we have chosen to use the ISAAC PRNG to initalize all the parameters for the GPU +version of our PRNG. The implementation of the three xor-like PRNGs is +straightforward as soon as their parameters have been allocated in the GPU +memory. Each xor-like PRNGs used works with an internal number $x$ which keeps +the last generated random numbers. Other internal variables are also used by the +xor-like PRNGs. More precisely, the implementation of the xor128, the xorshift +and the xorwow respectively require 4, 5 and 6 unsigned long as internal +variables. + +\begin{algorithm} + +\KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like PRNGs in global memory\; +NumThreads: Number of threads\;} +\KwOut{NewNb: array containing random numbers in global memory} +\If{threadId is concerned} { + retrieve data from InternalVarXorLikeArray[threadId] in local variables\; + \For{i=1 to n} { + compute a new PRNG as in Listing\ref{algo:seqCIprng}\; + store the new PRNG in NewNb[NumThreads*threadId+i]\; + } + store internal variables in InternalVarXorLikeArray[threadId]\; +} + +\caption{main kernel for the chaotic iterations based PRNG GPU version} +\label{algo:gpu_kernel} +\end{algorithm} + +According to the available memory in the GPU and the number of threads used +simultenaously, the number of random numbers that a thread can generate inside a +kernel is limited, i.e. the variable \texttt{n} in +algorithm~\ref{algo:gpu_kernel}. For example, if $100,000$ threads are used and +if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)} +then the memory required to store internals variables of xor-like +PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers} +and random number of our PRNG is equals to $100,000\times ((4+5+6)\times +2+(1+100))=1,310,000$ 32-bits numbers, i.e. about $52$Mb. \section{Experiments}