X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/14b55657fe448a88441d16d87e11398351dfb4ab..baf2ff7c5bd7a44b68600f37eb61b76e67a8be17:/prng_gpu.tex?ds=sidebyside diff --git a/prng_gpu.tex b/prng_gpu.tex index 807f6df..4880738 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -40,14 +40,25 @@ \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}} +\begin{document} +\begin{frontmatter} +\title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU} + + +\author{Jacques M. Bahi} +\ead{jacques.bahi@univ-fcomte.fr} +\author{ Rapha\"{e}l Couturier \corref{cor1}} +\ead{raphael.couturier@univ-fcomte.fr} +\cortext[cor1]{Corresponding author} +\author{ Christophe Guyeux} +\ead{christophe.guyeux@univ-fcomte.fr} +\author{ Pierre-Cyrille Héam } +\ead{pierre-cyrille.heam@univ-fcomte.fr} + +\address{FEMTO-ST Institute, UMR 6174 CNRS,\\ University of Franche Comte, Belfort, France\\ Authors in alphabetic order} -\title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU} -\begin{document} -\author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe -Guyeux, and Pierre-Cyrille Héam*\\ FEMTO-ST Institute, UMR 6174 CNRS,\\ University of Franche-Comt\'{e}, Besan\c con, France\\ * Authors in alphabetic order} - %\IEEEcompsoctitleabstractindextext{ \begin{abstract} @@ -65,8 +76,13 @@ A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is fin \end{abstract} %} +\begin{keyword} + pseudo random number\sep parallelization\sep GPU\sep cryptography\sep chaos + +\end{keyword} +\end{frontmatter} -\maketitle +%\maketitle %\IEEEdisplaynotcompsoctitleabstractindextext %\IEEEpeerreviewmaketitle @@ -177,8 +193,8 @@ Pseudorandom numbers are generated at a rate of 20GSamples/s, which is faster than in~\cite{conf/fpga/ThomasHL09,Marsaglia2003} (and with a better statistical behavior). Experiments are also provided using BBS as the initial random generator. The generation speed is significantly weaker. -Note also that an original qualitative comparison between topological chaotic -properties and statistical tests is also proposed. +%Note also that an original qualitative comparison between topological chaotic +%properties and statistical tests is also proposed. @@ -1786,14 +1802,7 @@ Let $\varepsilon > 0$. $\mathcal{D}$ is called a $(T,\varepsilon)-$distinguishing attack on pseudorandom generator $G$ if -\begin{flushleft} -$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right.$ -\end{flushleft} - -\begin{flushright} -$ - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$ -\end{flushright} - +$$\left| Pr[\mathcal{D}(G(k)) = 1 \mid k \in_R \{0,1\}^\ell ]\right. - \left. Pr[\mathcal{D}(s) = 1 \mid s \in_R \mathds{B}^M ]\right| \geqslant \varepsilon,$$ \noindent where the probability is taken over the internal coin flips of $\mathcal{D}$, and the notation ``$\in_R$'' indicates the process of selecting an element at random and uniformly over the corresponding set.