X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/2174d791963cf35c69e4cb1fa51771521f34d9d5..3add2868094bc67744e89777e13ce7087b53e01e:/prng_gpu.tex?ds=sidebyside diff --git a/prng_gpu.tex b/prng_gpu.tex index 96098bb..c504e98 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -34,7 +34,7 @@ \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}} -\title{Efficient generation of pseudo random numbers based on chaotic iterations +\title{Efficient Generation of Pseudo-Random Bumbers based on Chaotic Iterations on GPU} \begin{document} @@ -59,11 +59,11 @@ Interet de générer des nombres alea sur GPU \label{section:BASIC RECALLS} This section is devoted to basic definitions and terminologies in the fields of topological chaos and chaotic iterations. -\subsection{Devaney's chaotic dynamical systems} +\subsection{Devaney's Chaotic Dynamical Systems} In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$ -denotes the $k^{th}$ composition of a function $f$. Finally, the following +is for the $k^{th}$ composition of a function $f$. Finally, the following notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$. @@ -89,7 +89,7 @@ necessarily the same period). \end{definition} -\begin{definition} +\begin{definition}[Devaney's formulation of chaos~\cite{Devaney}] $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. \end{definition} @@ -119,7 +119,7 @@ possible and occur in an unpredictable way. -\subsection{Chaotic iterations} +\subsection{Chaotic Iterations} \label{sec:chaotic iterations} @@ -135,7 +135,7 @@ denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$ \label{Def:chaotic iterations} The set $\mathds{B}$ denoting $\{0,1\}$, let $f:\mathds{B}^{\mathsf{N}}\longrightarrow \mathds{B}^{\mathsf{N}}$ be -a function and $S\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ be a strategy. The so-called +a function and $S\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ be a ``strategy''. The so-called \emph{chaotic iterations} are defined by $x^0\in \mathds{B}^{\mathsf{N}}$ and \begin{equation} @@ -155,7 +155,7 @@ $\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by $\left(f(x^{k})\right)_{S^{n}}$, where $k0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. +Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, +are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define +$\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$. +We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates +that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of +the form $(S',E')$ where $E'=E$ and $S'$ starts with +$(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties: +\begin{itemize} + \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$, + \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$. +\end{itemize} +Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, +where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties +claimed in the lemma. +\end{proof} + +We can now prove the Theorem~\ref{t:chaos des general}... + +\begin{proof}[Theorem~\ref{t:chaos des general}] +Firstly, strong transitivity implies transitivity. + +Let $(S,E) \in\mathcal{X}$ and $\varepsilon >0$. To +prove that $G_f$ is regular, it is sufficient to prove that +there exists a strategy $\tilde S$ such that the distance between +$(\tilde S,E)$ and $(S,E)$ is less than $\varepsilon$, and such that +$(\tilde S,E)$ is a periodic point. + +Let $t_1=\lfloor-\log_{10}(\varepsilon)\rfloor$, and let $E'$ be the +configuration that we obtain from $(S,E)$ after $t_1$ iterations of +$G_f$. As $G_f$ is strongly transitive, there exists a strategy $S'$ +and $t_2\in\mathds{N}$ such +that $E$ is reached from $(S',E')$ after $t_2$ iterations of $G_f$. + +Consider the strategy $\tilde S$ that alternates the first $t_1$ terms +of $S$ and the first $t_2$ terms of $S'$: $$\tilde +S=(S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots,S_{t_1-1},S'_0,\dots,S'_{t_2-1},S_0,\dots).$$ It +is clear that $(\tilde S,E)$ is obtained from $(\tilde S,E)$ after +$t_1+t_2$ iterations of $G_f$. So $(\tilde S,E)$ is a periodic +point. Since $\tilde S_t=S_t$ for $t