X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/39211acd090848fea982c58fd56a95396913db0b..556196c81dc8aac11552b716e1352116dfeeae01:/prng_gpu.tex diff --git a/prng_gpu.tex b/prng_gpu.tex index cd8bad3..6776b9a 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -7,6 +7,8 @@ \usepackage{amscd} \usepackage{moreverb} \usepackage{commath} +\usepackage{algorithm2e} +\usepackage{listings} \usepackage[standard]{ntheorem} % Pour mathds : les ensembles IR, IN, etc. @@ -32,8 +34,13 @@ \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}} -\title{Efficient generation of pseudo random numbers based on chaotic iterations on GPU} +\title{Efficient generation of pseudo random numbers based on chaotic iterations +on GPU} \begin{document} + +\author{Jacques M. Bahi, Rapha\"{e}l Couturier, and Christophe +Guyeux\thanks{Authors in alphabetic order}} + \maketitle \begin{abstract} @@ -44,12 +51,681 @@ This is the abstract Interet des itérations chaotiques pour générer des nombre alea\\ Interet de générer des nombres alea sur GPU +\alert{RC, un petit state-of-the-art sur les PRNGs sur GPU ?} ... -\section{Chaotic iterations} -Présentation des itérations chaotiques +\section{Basic Recalls} +\label{section:BASIC RECALLS} +This section is devoted to basic definitions and terminologies in the fields of +topological chaos and chaotic iterations. +\subsection{Devaney's chaotic dynamical systems} + +In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ +denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$ +denotes the $k^{th}$ composition of a function $f$. Finally, the following +notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$. + + +Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f : +\mathcal{X} \rightarrow \mathcal{X}$. + +\begin{definition} +$f$ is said to be \emph{topologically transitive} if, for any pair of open sets +$U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq +\varnothing$. +\end{definition} + +\begin{definition} +An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$ +if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$ +\end{definition} + +\begin{definition} +$f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic +points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$, +any neighborhood of $x$ contains at least one periodic point (without +necessarily the same period). +\end{definition} + + +\begin{definition} +$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and +topologically transitive. +\end{definition} + +The chaos property is strongly linked to the notion of ``sensitivity'', defined +on a metric space $(\mathcal{X},d)$ by: + +\begin{definition} +\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions} +if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any +neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that +$d\left(f^{n}(x), f^{n}(y)\right) >\delta $. + +$\delta$ is called the \emph{constant of sensitivity} of $f$. +\end{definition} + +Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is +chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of +sensitive dependence on initial conditions (this property was formerly an +element of the definition of chaos). To sum up, quoting Devaney +in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the +sensitive dependence on initial conditions. It cannot be broken down or +simplified into two subsystems which do not interact because of topological +transitivity. And in the midst of this random behavior, we nevertheless have an +element of regularity''. Fundamentally different behaviors are consequently +possible and occur in an unpredictable way. + + + +\subsection{Chaotic iterations} +\label{sec:chaotic iterations} + + +Let us consider a \emph{system} with a finite number $\mathsf{N} \in +\mathds{N}^*$ of elements (or \emph{cells}), so that each cell has a +Boolean \emph{state}. Having $\mathsf{N}$ Boolean values for these + cells leads to the definition of a particular \emph{state of the +system}. A sequence which elements belong to $\llbracket 1;\mathsf{N} +\rrbracket $ is called a \emph{strategy}. The set of all strategies is +denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$ + +\begin{definition} +\label{Def:chaotic iterations} +The set $\mathds{B}$ denoting $\{0,1\}$, let +$f:\mathds{B}^{\mathsf{N}}\longrightarrow \mathds{B}^{\mathsf{N}}$ be +a function and $S\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ be a strategy. The so-called +\emph{chaotic iterations} are defined by $x^0\in +\mathds{B}^{\mathsf{N}}$ and +\begin{equation} +\forall n\in \mathds{N}^{\ast }, \forall i\in +\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{ +\begin{array}{ll} + x_i^{n-1} & \text{ if }S^n\neq i \\ + \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i. +\end{array}\right. +\end{equation} +\end{definition} + +In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is +\textquotedblleft iterated\textquotedblright . Note that in a more +general formulation, $S^n$ can be a subset of components and +$\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by +$\left(f(x^{k})\right)_{S^{n}}$, where $k>$32);\\ +%% x = x\textasciicircum (unsigned int)(t3$>>$32);\\ +%% x = x\textasciicircum (unsigned int)t2;\\ +%% x = x\textasciicircum (unsigned int)(t1$>>$32);\\ +%% x = x\textasciicircum (unsigned int)t3;\\ +%% return x;\\ +%% \} +%% \end{minipage} +%% } +%% \end{center} +%% \caption{sequential Chaotic Iteration PRNG} +%% \label{algo:seqCIprng} +%% \end{figure} + + + +\lstset{language=C,caption={C code of the sequential chaotic iterations based +PRNG},label=algo:seqCIprng} +\begin{lstlisting} +unsigned int CIprng() { + static unsigned int x = 123123123; + unsigned long t1 = xorshift(); + unsigned long t2 = xor128(); + unsigned long t3 = xorwow(); + x = x^(unsigned int)t1; + x = x^(unsigned int)(t2>>32); + x = x^(unsigned int)(t3>>32); + x = x^(unsigned int)t2; + x = x^(unsigned int)(t1>>32); + x = x^(unsigned int)t3; + return x; +} +\end{lstlisting} + + + + +In listing~\ref{algo:seqCIprng} a sequential version of our chaotic iterations +based PRNG is presented. The xor operator is represented by +\textasciicircum. This function uses three classical 64-bits PRNG: the +\texttt{xorshift}, the \texttt{xor128} and the \texttt{xorwow}. In the +following, we call them xor-like PRNGSs. These three PRNGs are presented +in~\cite{Marsaglia2003}. As each xor-like PRNG used works with 64-bits and as +our PRNG works with 32-bits, the use of \texttt{(unsigned int)} selects the 32 +least significant bits whereas \texttt{(unsigned int)(t3$>>$32)} selects the 32 +most significants bits of the variable \texttt{t}. So to produce a random +number realizes 6 xor operations with 6 32-bits numbers produced by 3 64-bits +PRNG. This version successes the BigCrush of the TestU01 battery [P. L’ecuyer + and R. Simard. Testu01]. + +\section{Efficient prng based on chaotic iterations on GPU} + +In order to benefit from computing power of GPU, a program needs to define +independent blocks of threads which can be computed simultaneously. In general, +the larger the number of threads is, the more local memory is used and the less +branching instructions are used (if, while, ...), the better performance is +obtained on GPU. So with algorithm \ref{algo:seqCIprng} presented in the +previous section, it is possible to build a similar program which computes PRNG +on GPU. In the CUDA [ref] environment, threads have a local identificator, +called \texttt{ThreadIdx} relative to the block containing them. + + +\subsection{Naive version for GPU} + +From the CPU version, it is possible to obtain a quite similar version for GPU. +The principe consists in assigning the computation of a PRNG as in sequential to +each thread of the GPU. Of course, it is essential that the three xor-like +PRNGs used for our computation have different parameters. So we chose them +randomly with another PRNG. As the initialisation is performed by the CPU, we +have chosen to use the ISAAC PRNG [ref] to initalize all the parameters for the +GPU version of our PRNG. The implementation of the three xor-like PRNGs is +straightforward as soon as their parameters have been allocated in the GPU +memory. Each xor-like PRNGs used works with an internal number $x$ which keeps +the last generated random numbers. Other internal variables are also used by the +xor-like PRNGs. More precisely, the implementation of the xor128, the xorshift +and the xorwow respectively require 4, 5 and 6 unsigned long as internal +variables. + +\begin{algorithm} + +\KwIn{InternalVarXorLikeArray: array with internal variables of the 3 xor-like +PRNGs in global memory\; +NumThreads: Number of threads\;} +\KwOut{NewNb: array containing random numbers in global memory} +\If{threadIdx is concerned by the computation} { + retrieve data from InternalVarXorLikeArray[threadIdx] in local variables\; + \For{i=1 to n} { + compute a new PRNG as in Listing\ref{algo:seqCIprng}\; + store the new PRNG in NewNb[NumThreads*threadIdx+i]\; + } + store internal variables in InternalVarXorLikeArray[threadIdx]\; +} + +\caption{main kernel for the chaotic iterations based PRNG GPU naive version} +\label{algo:gpu_kernel} +\end{algorithm} + +Algorithm~\ref{algo:gpu_kernel} presents a naive implementation of PRNG using +GPU. According to the available memory in the GPU and the number of threads +used simultenaously, the number of random numbers that a thread can generate +inside a kernel is limited, i.e. the variable \texttt{n} in +algorithm~\ref{algo:gpu_kernel}. For example, if $100,000$ threads are used and +if $n=100$\footnote{in fact, we need to add the initial seed (a 32-bits number)} +then the memory required to store internals variables of xor-like +PRNGs\footnote{we multiply this number by $2$ in order to count 32-bits numbers} +and random number of our PRNG is equals to $100,000\times ((4+5+6)\times +2+(1+100))=1,310,000$ 32-bits numbers, i.e. about $52$Mb. + +All the tests performed to pass the BigCrush of TestU01 succeeded. Different +number of threads, called \texttt{NumThreads} in our algorithm, have been tested +upto $10$ millions. + +\begin{remark} +Algorithm~\ref{algo:gpu_kernel} has the advantage to manipulate independent +PRNGs, so this version is easily usable on a cluster of computer. The only thing +to ensure is to use a single ISAAC PRNG. For this, a simple solution consists in +using a master node for the initialization which computes the initial parameters +for all the differents nodes involves in the computation. +\end{remark} + +\subsection{Improved version for GPU} + +As GPU cards using CUDA have shared memory between threads of the same block, it +is possible to use this feature in order to simplify the previous algorithm, +i.e. using less than 3 xor-like PRNGs. The solution consists in computing only +one xor-like PRNG by thread, saving it into shared memory and using the results +of some other threads in the same block of threads. In order to define which +thread uses the result of which other one, we can use a permutation array which +contains the indexes of all threads and for which a permutation has been +performed. In Algorithm~\ref{algo:gpu_kernel2}, 2 permutations arrays are used. +The variable \texttt{offset} is computed using the value of +\texttt{permutation\_size}. Then we can compute \texttt{o1} and \texttt{o2} +which represent the indexes of the other threads for which the results are used +by the current thread. In the algorithm, we consider that a 64-bits xor-like +PRNG is used, that is why both 32-bits parts are used. + +This version also succeed to the BigCrush batteries of tests. + +\begin{algorithm} + +\KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs +in global memory\; +NumThreads: Number of threads\; +tab1, tab2: Arrays containing permutations of size permutation\_size\;} + +\KwOut{NewNb: array containing random numbers in global memory} +\If{threadId is concerned} { + retrieve data from InternalVarXorLikeArray[threadId] in local variables\; + offset = threadIdx\%permutation\_size\; + o1 = threadIdx-offset+tab1[offset]\; + o2 = threadIdx-offset+tab2[offset]\; + \For{i=1 to n} { + t=xor-like()\; + shared\_mem[threadId]=(unsigned int)t\; + x = x $\oplus$ (unsigned int) t\; + x = x $\oplus$ (unsigned int) (t>>32)\; + x = x $\oplus$ shared[o1]\; + x = x $\oplus$ shared[o2]\; + + store the new PRNG in NewNb[NumThreads*threadId+i]\; + } + store internal variables in InternalVarXorLikeArray[threadId]\; +} + +\caption{main kernel for the chaotic iterations based PRNG GPU efficient +version} +\label{algo:gpu_kernel2} +\end{algorithm} + + + +\section{Experiments} + +Differents experiments have been performed in order to measure the generation +speed. +\begin{figure}[t] +\begin{center} + \includegraphics[scale=.7]{curve_time_gpu.pdf} +\end{center} +\caption{Number of random numbers generated per second} +\label{fig:time_naive_gpu} +\end{figure} + + +First of all we have compared the time to generate X random numbers with both +the CPU version and the GPU version. + +Faire une courbe du nombre de random en fonction du nombre de threads, +éventuellement en fonction du nombres de threads par bloc. @@ -61,110 +737,199 @@ Présentation des itérations chaotiques Let us firstly introduce the following notations. \begin{notation} -$\mathcal{X}_\tau$ will denote the topological space $\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply $\mathcal{V} (x)$, if there is no ambiguity). +$\mathcal{X}_\tau$ will denote the topological space +$\left(\mathcal{X},\tau\right)$, whereas $\mathcal{V}_\tau (x)$ will be the set +of all the neighborhoods of $x$ when considering the topology $\tau$ (or simply +$\mathcal{V} (x)$, if there is no ambiguity). \end{notation} \begin{theorem} \label{Th:chaos et finesse} -Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t. $\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous both for $\tau$ and $\tau'$. +Let $\mathcal{X}$ a set and $\tau, \tau'$ two topologies on $\mathcal{X}$ s.t. +$\tau'$ is finer than $\tau$. Let $f:\mathcal{X} \to \mathcal{X}$, continuous +both for $\tau$ and $\tau'$. -If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then $(\mathcal{X}_\tau,f)$ is chaotic too. +If $(\mathcal{X}_{\tau'},f)$ is chaotic according to Devaney, then +$(\mathcal{X}_\tau,f)$ is chaotic too. \end{theorem} \begin{proof} Let us firstly establish the transitivity of $(\mathcal{X}_\tau,f)$. -Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in \tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) = \varnothing$. Consequently, $f$ is $\tau-$transitive. +Let $\omega_1, \omega_2$ two open sets of $\tau$. Then $\omega_1, \omega_2 \in +\tau'$, becaus $\tau'$ is finer than $\tau$. As $f$ is $\tau'-$transitive, we +can deduce that $\exists n \in \mathds{N}, \omega_1 \cap f^{(n)}(\omega_2) = +\varnothing$. Consequently, $f$ is $\tau-$transitive. + +Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for +all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a +periodic point for $f$ into $V$. + +Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood +of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$. + +But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in +\mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a +periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is +proven. +\end{proof} + +\subsection{A given system can always be claimed as chaotic} + +Let $f$ an iteration function on $\mathcal{X}$ having at least a fixed point. +Then this function is chaotic (in a certain way): + +\begin{theorem} +Let $\mathcal{X}$ a nonempty set and $f: \mathcal{X} \to \X$ a function having +at least a fixed point. +Then $f$ is $\tau_0-$chaotic, where $\tau_0$ is the trivial (indiscrete) +topology on $\X$. +\end{theorem} + + +\begin{proof} +$f$ is transitive when $\forall \omega, \omega' \in \tau_0 \setminus +\{\varnothing\}, \exists n \in \mathds{N}, f^{(n)}(\omega) \cap \omega' \neq +\varnothing$. +As $\tau_0 = \left\{ \varnothing, \X \right\}$, this is equivalent to look for +an integer $n$ s.t. $f^{(n)}\left( \X \right) \cap \X \neq \varnothing$. For +instance, $n=0$ is appropriate. + +Let us now consider $x \in \X$ and $V \in \mathcal{V}_{\tau_0} (x)$. Then $V = +\mathcal{X}$, so $V$ has at least a fixed point for $f$. Consequently $f$ is +regular, and the result is established. +\end{proof} + + -Let us now consider the regularity of $(\mathcal{X}_\tau,f)$, \emph{i.e.}, for all $x \in \mathcal{X}$, and for all $\tau-$neighborhood $V$ of $x$, there is a periodic point for $f$ into $V$. -Let $x \in \mathcal{X}$ and $V \in \mathcal{V}_\tau (x)$ a $\tau-$neighborhood of $x$. By definition, $\exists \omega \in \tau, x \in \omega \subset V$. +\subsection{A given system can always be claimed as non-chaotic} -But $\tau \subset \tau'$, so $\omega \in \tau'$, and then $V \in \mathcal{V}_{\tau'} (x)$. As $(\mathcal{X}_{\tau'},f)$ is regular, there is a periodic point for $f$ into $V$, and the regularity of $(\mathcal{X}_\tau,f)$ is proven. +\begin{theorem} +Let $\mathcal{X}$ be a set and $f: \mathcal{X} \to \X$. +If $\X$ is infinite, then $\left( \X_{\tau_\infty}, f\right)$ is not chaotic +(for the Devaney's formulation), where $\tau_\infty$ is the discrete topology. +\end{theorem} + +\begin{proof} +Let us prove it by contradiction, assuming that $\left(\X_{\tau_\infty}, +f\right)$ is both transitive and regular. + +Let $x \in \X$ and $\{x\}$ one of its neighborhood. This neighborhood must +contain a periodic point for $f$, if we want that $\left(\X_{\tau_\infty}, +f\right)$ is regular. Then $x$ must be a periodic point of $f$. + +Let $I_x = \left\{ f^{(n)}(x), n \in \mathds{N}\right\}$. This set is finite +because $x$ is periodic, and $\mathcal{X}$ is infinite, then $\exists y \in +\mathcal{X}, y \notin I_x$. + +As $\left(\X_{\tau_\infty}, f\right)$ must be transitive, for all open nonempty +sets $A$ and $B$, an integer $n$ must satisfy $f^{(n)}(A) \cap B \neq +\varnothing$. However $\{x\}$ and $\{y\}$ are open sets and $y \notin I_x +\Rightarrow \forall n, f^{(n)}\left( \{x\} \right) \cap \{y\} = \varnothing$. \end{proof} + + \section{Chaos on the order topology} \subsection{The phase space is an interval of the real line} \subsubsection{Toward a topological semiconjugacy} -In what follows, our intention is to establish, by using a topological semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as iterations on a real interval. To do so, we must firstly introduce some notations and terminologies. +In what follows, our intention is to establish, by using a topological +semiconjugacy, that chaotic iterations over $\mathcal{X}$ can be described as +iterations on a real interval. To do so, we must firstly introduce some +notations and terminologies. -Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket 1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N} \times \B^\mathsf{N}$. +Let $\mathcal{S}_\mathsf{N}$ be the set of sequences belonging into $\llbracket +1; \mathsf{N}\rrbracket$ and $\mathcal{X}_{\mathsf{N}} = \mathcal{S}_\mathsf{N} +\times \B^\mathsf{N}$. \begin{definition} -The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[ 0, 2^{10} \big[$ is defined by: -$$ -\begin{array}{cccl} -\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}& \longrightarrow & \big[ 0, 2^{10} \big[ \\ - & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto & \varphi \left((S,E)\right) +The function $\varphi: \mathcal{S}_{10} \times\mathds{B}^{10} \rightarrow \big[ +0, 2^{10} \big[$ is defined by: +\begin{equation} + \begin{array}{cccl} +\varphi: & \mathcal{X}_{10} = \mathcal{S}_{10} \times\mathds{B}^{10}& +\longrightarrow & \big[ 0, 2^{10} \big[ \\ + & (S,E) = \left((S^0, S^1, \hdots ); (E_0, \hdots, E_9)\right) & \longmapsto & +\varphi \left((S,E)\right) \end{array} -$$ -\noindent where $\varphi\left((S,E)\right)$ is the real number: +\end{equation} +where $\varphi\left((S,E)\right)$ is the real number: \begin{itemize} -\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$. -\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots = \sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ +\item whose integral part $e$ is $\displaystyle{\sum_{k=0}^9 2^{9-k} E_k}$, that +is, the binary digits of $e$ are $E_0 ~ E_1 ~ \hdots ~ E_9$. +\item whose decimal part $s$ is equal to $s = 0,S^0~ S^1~ S^2~ \hdots = +\sum_{k=1}^{+\infty} 10^{-k} S^{k-1}.$ \end{itemize} \end{definition} -$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic iterations $\Go$ on this real interval. To do so, two intermediate functions over $\big[ 0, 2^{10} \big[$ must be introduced: +$\varphi$ realizes the association between a point of $\mathcal{X}_{10}$ and a +real number into $\big[ 0, 2^{10} \big[$. We must now translate the chaotic +iterations $\Go$ on this real interval. To do so, two intermediate functions +over $\big[ 0, 2^{10} \big[$ must be introduced: \begin{definition} \label{def:e et s} Let $x \in \big[ 0, 2^{10} \big[$ and: \begin{itemize} -\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$: $\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$. -\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal decomposition of $x$ is the one that does not have an infinite number of 9: +\item $e_0, \hdots, e_9$ the binary digits of the integral part of $x$: +$\displaystyle{\lfloor x \rfloor = \sum_{k=0}^{9} 2^{9-k} e_k}$. +\item $(s^k)_{k\in \mathds{N}}$ the digits of $x$, where the chosen decimal +decomposition of $x$ is the one that does not have an infinite number of 9: $\displaystyle{x = \lfloor x \rfloor + \sum_{k=0}^{+\infty} s^k 10^{-k-1}}$. \end{itemize} $e$ and $s$ are thus defined as follows: -$$ +\begin{equation} \begin{array}{cccl} e: & \big[ 0, 2^{10} \big[ & \longrightarrow & \mathds{B}^{10} \\ & x & \longmapsto & (e_0, \hdots, e_9) \end{array} -$$ -\noindent and -$$ -\begin{array}{cccl} -s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9 \rrbracket^{\mathds{N}} \\ +\end{equation} +and +\begin{equation} + \begin{array}{cccc} +s: & \big[ 0, 2^{10} \big[ & \longrightarrow & \llbracket 0, 9 +\rrbracket^{\mathds{N}} \\ & x & \longmapsto & (s^k)_{k \in \mathds{N}} \end{array} -$$ +\end{equation} \end{definition} -We are now able to define the function $g$, whose goal is to translate the chaotic iterations $\Go$ on an interval of $\mathds{R}$. +We are now able to define the function $g$, whose goal is to translate the +chaotic iterations $\Go$ on an interval of $\mathds{R}$. \begin{definition} $g:\big[ 0, 2^{10} \big[ \longrightarrow \big[ 0, 2^{10} \big[$ is defined by: -$$ -\begin{array}{cccl} +\begin{equation} +\begin{array}{cccc} g: & \big[ 0, 2^{10} \big[ & \longrightarrow & \big[ 0, 2^{10} \big[ \\ -& \\ & x & \longmapsto & g(x) \end{array} -$$ -\noindent where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow: +\end{equation} +where g(x) is the real number of $\big[ 0, 2^{10} \big[$ defined bellow: \begin{itemize} -\item its integral part has a binary decomposition equal to $e_0', \hdots, e_9'$, with: -$$ +\item its integral part has a binary decomposition equal to $e_0', \hdots, +e_9'$, with: + \begin{equation} e_i' = \left\{ \begin{array}{ll} e(x)_i & \textrm{ if } i \neq s^0\\ e(x)_i + 1 \textrm{ (mod 2)} & \textrm{ if } i = s^0\\ \end{array} \right. -$$ +\end{equation} \item whose decimal part is $s(x)^1, s(x)^2, \hdots$ \end{itemize} \end{definition} @@ -172,28 +937,43 @@ $$ \bigskip -In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + \sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then: $$g(x) = \displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + \sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}.$$ +In other words, if $x = \displaystyle{\sum_{k=0}^{9} 2^{9-k} e_k + +\sum_{k=0}^{+\infty} s^{k} ~10^{-k-1}}$, then: +\begin{equation} +g(x) = +\displaystyle{\sum_{k=0}^{9} 2^{9-k} (e_k + \delta(k,s^0) \textrm{ (mod 2)}) + +\sum_{k=0}^{+\infty} s^{k+1} 10^{-k-1}}. +\end{equation} + \subsubsection{Defining a metric on $\big[ 0, 2^{10} \big[$} -Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most usual one being the Euclidian distance recalled bellow: +Numerous metrics can be defined on the set $\big[ 0, 2^{10} \big[$, the most +usual one being the Euclidian distance recalled bellow: \begin{notation} \index{distance!euclidienne} -$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is, $\Delta(x,y) = |y-x|^2$. +$\Delta$ is the Euclidian distance on $\big[ 0, 2^{10} \big[$, that is, +$\Delta(x,y) = |y-x|^2$. \end{notation} \medskip -This Euclidian distance does not reproduce exactly the notion of proximity induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$. This is the reason why we have to introduce the following metric: +This Euclidian distance does not reproduce exactly the notion of proximity +induced by our first distance $d$ on $\X$. Indeed $d$ is finer than $\Delta$. +This is the reason why we have to introduce the following metric: \begin{definition} Let $x,y \in \big[ 0, 2^{10} \big[$. -$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$ defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$, where: +$D$ denotes the function from $\big[ 0, 2^{10} \big[^2$ to $\mathds{R}^+$ +defined by: $D(x,y) = D_e\left(e(x),e(y)\right) + D_s\left(s(x),s(y)\right)$, +where: \begin{center} -$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k, \check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty \dfrac{|S^k-\check{S}^k|}{10^k}}$. +$\displaystyle{D_e(E,\check{E}) = \sum_{k=0}^\mathsf{9} \delta (E_k, +\check{E}_k)}$, ~~and~ $\displaystyle{D_s(S,\check{S}) = \sum_{k = 1}^\infty +\dfrac{|S^k-\check{S}^k|}{10^k}}$. \end{center} \end{definition} @@ -204,21 +984,35 @@ $D$ is a distance on $\big[ 0, 2^{10} \big[$. \begin{proof} The three axioms defining a distance must be checked. \begin{itemize} -\item $D \geqslant 0$, because everything is positive in its definition. If $D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal (they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then $\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$. +\item $D \geqslant 0$, because everything is positive in its definition. If +$D(x,y)=0$, then $D_e(x,y)=0$, so the integral parts of $x$ and $y$ are equal +(they have the same binary decomposition). Additionally, $D_s(x,y) = 0$, then +$\forall k \in \mathds{N}^*, s(x)^k = s(y)^k$. In other words, $x$ and $y$ have +the same $k-$th decimal digit, $\forall k \in \mathds{N}^*$. And so $x=y$. \item $D(x,y)=D(y,x)$. -\item Finally, the triangular inequality is obtained due to the fact that both $\delta$ and $\Delta(x,y)=|x-y|$ satisfy it. +\item Finally, the triangular inequality is obtained due to the fact that both +$\delta$ and $\Delta(x,y)=|x-y|$ satisfy it. \end{itemize} \end{proof} -The convergence of sequences according to $D$ is not the same than the usual convergence related to the Euclidian metric. For instance, if $x^n \to x$ according to $D$, then necessarily the integral part of each $x^n$ is equal to the integral part of $x$ (at least after a given threshold), and the decimal part of $x^n$ corresponds to the one of $x$ ``as far as required''. -To illustrate this fact, a comparison between $D$ and the Euclidian distance is given Figure \ref{fig:comparaison de distances}. These illustrations show that $D$ is richer and more refined than the Euclidian distance, and thus is more precise. +The convergence of sequences according to $D$ is not the same than the usual +convergence related to the Euclidian metric. For instance, if $x^n \to x$ +according to $D$, then necessarily the integral part of each $x^n$ is equal to +the integral part of $x$ (at least after a given threshold), and the decimal +part of $x^n$ corresponds to the one of $x$ ``as far as required''. +To illustrate this fact, a comparison between $D$ and the Euclidian distance is +given Figure \ref{fig:comparaison de distances}. These illustrations show that +$D$ is richer and more refined than the Euclidian distance, and thus is more +precise. \begin{figure}[t] \begin{center} - \subfigure[Function $x \to dist(x;1,234) $ on the interval $(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad - \subfigure[Function $x \to dist(x;3) $ on the interval $(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}} + \subfigure[Function $x \to dist(x;1,234) $ on the interval +$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien.pdf}}\quad + \subfigure[Function $x \to dist(x;3) $ on the interval +$(0;5)$.]{\includegraphics[scale=.35]{DvsEuclidien2.pdf}} \end{center} \caption{Comparison between $D$ (in blue) and the Euclidian distane (in green).} \label{fig:comparaison de distances} @@ -229,15 +1023,19 @@ To illustrate this fact, a comparison between $D$ and the Euclidian distance is \subsubsection{The semiconjugacy} -It is now possible to define a topological semiconjugacy between $\mathcal{X}$ and an interval of $\mathds{R}$: +It is now possible to define a topological semiconjugacy between $\mathcal{X}$ +and an interval of $\mathds{R}$: \begin{theorem} -Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on $\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow: +Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on +$\mathds{R}$, which is illustrated by the semiconjugacy of the diagram bellow: \begin{equation*} \begin{CD} -\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>> \left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\ +\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right) @>G_{f_0}>> +\left(~\mathcal{S}_{10} \times\mathds{B}^{10}, d~\right)\\ @V{\varphi}VV @VV{\varphi}V\\ -\left( ~\big[ 0, 2^{10} \big[, D~\right) @>>g> \left(~\big[ 0, 2^{10} \big[, D~\right) +\left( ~\big[ 0, 2^{10} \big[, D~\right) @>>g> \left(~\big[ 0, 2^{10} \big[, +D~\right) \end{CD} \end{equation*} \end{theorem} @@ -246,7 +1044,8 @@ Chaotic iterations on the phase space $\mathcal{X}$ are simple iterations on $\m $\varphi$ has been constructed in order to be continuous and onto. \end{proof} -In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N} \big[$. +In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N} +\big[$. @@ -258,10 +1057,14 @@ In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N} \ \begin{figure}[t] \begin{center} - \subfigure[ICs on the interval $(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad - \subfigure[ICs on the interval $(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\ - \subfigure[ICs on the interval $(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad - \subfigure[ICs on the interval $(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}} + \subfigure[ICs on the interval +$(0,9;1)$.]{\includegraphics[scale=.35]{ICs09a1.pdf}}\quad + \subfigure[ICs on the interval +$(0,7;1)$.]{\includegraphics[scale=.35]{ICs07a95.pdf}}\\ + \subfigure[ICs on the interval +$(0,5;1)$.]{\includegraphics[scale=.35]{ICs05a1.pdf}}\quad + \subfigure[ICs on the interval +$(0;1)$]{\includegraphics[scale=.35]{ICs0a1.pdf}} \end{center} \caption{Representation of the chaotic iterations.} \label{fig:ICs} @@ -272,8 +1075,10 @@ In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N} \ \begin{figure}[t] \begin{center} - \subfigure[ICs on the interval $(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad - \subfigure[ICs on the interval $(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}} + \subfigure[ICs on the interval +$(510;514)$.]{\includegraphics[scale=.35]{ICs510a514.pdf}}\quad + \subfigure[ICs on the interval +$(1000;1008)$]{\includegraphics[scale=.35]{ICs1000a1008.pdf}} \end{center} \caption{ICs on small intervals.} \label{fig:ICs2} @@ -281,49 +1086,78 @@ In other words, $\mathcal{X}$ is approximately equal to $\big[ 0, 2^\mathsf{N} \ \begin{figure}[t] \begin{center} - \subfigure[ICs on the interval $(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad - \subfigure[ICs on the interval $(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad + \subfigure[ICs on the interval +$(0;16)$.]{\includegraphics[scale=.3]{ICs0a16.pdf}}\quad + \subfigure[ICs on the interval +$(40;70)$.]{\includegraphics[scale=.45]{ICs40a70.pdf}}\quad \end{center} \caption{General aspect of the chaotic iterations.} \label{fig:ICs3} \end{figure} -We have written a Python program to represent the chaotic iterations with the vectorial negation on the real line $\mathds{R}$. Various representations of these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}. It can be remarked that the function $g$ is a piecewise linear function: it is linear on each interval having the form $\left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its slope is equal to 10. Let us justify these claims: +We have written a Python program to represent the chaotic iterations with the +vectorial negation on the real line $\mathds{R}$. Various representations of +these CIs are given in Figures \ref{fig:ICs}, \ref{fig:ICs2} and \ref{fig:ICs3}. +It can be remarked that the function $g$ is a piecewise linear function: it is +linear on each interval having the form $\left[ \dfrac{n}{10}, +\dfrac{n+1}{10}\right[$, $n \in \llbracket 0;2^{10}\times 10 \rrbracket$ and its +slope is equal to 10. Let us justify these claims: \begin{proposition} \label{Prop:derivabilite des ICs} -Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on $\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{ \dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$. - -Furthermore, on each interval of the form $\left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$, $g$ is a linear function, having a slope equal to 10: $\forall x \notin I, g'(x)=10$. +Chaotic iterations $g$ defined on $\mathds{R}$ have derivatives of all orders on +$\big[ 0, 2^{10} \big[$, except on the 10241 points in $I$ defined by $\left\{ +\dfrac{n}{10} ~\big/~ n \in \llbracket 0;2^{10}\times 10\rrbracket \right\}$. + +Furthermore, on each interval of the form $\left[ \dfrac{n}{10}, +\dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$, +$g$ is a linear function, having a slope equal to 10: $\forall x \notin I, +g'(x)=10$. \end{proposition} \begin{proof} -Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket 0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral prat $e$ and the same decimal part $s^0$: on the set $I_n$, functions $e(x)$ and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all the images $g(x)$ of these points $x$: +Let $I_n = \left[ \dfrac{n}{10}, \dfrac{n+1}{10}\right[$, with $n \in \llbracket +0;2^{10}\times 10 \rrbracket$. All the points of $I_n$ have the same integral +prat $e$ and the same decimal part $s^0$: on the set $I_n$, functions $e(x)$ +and $x \mapsto s(x)^0$ of Definition \ref{def:e et s} only depend on $n$. So all +the images $g(x)$ of these points $x$: \begin{itemize} -\item Have the same integral part, which is $e$, except probably the bit number $s^0$. In other words, this integer has approximately the same binary decomposition than $e$, the sole exception being the digit $s^0$ (this number is then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$, \emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$). -\item A shift to the left has been applied to the decimal part $y$, losing by doing so the common first digit $s^0$. In other words, $y$ has been mapped into $10\times y - s^0$. +\item Have the same integral part, which is $e$, except probably the bit number +$s^0$. In other words, this integer has approximately the same binary +decomposition than $e$, the sole exception being the digit $s^0$ (this number is +then either $e+2^{10-s^0}$ or $e-2^{10-s^0}$, depending on the parity of $s^0$, +\emph{i.e.}, it is equal to $e+(-1)^{s^0}\times 2^{10-s^0}$). +\item A shift to the left has been applied to the decimal part $y$, losing by +doing so the common first digit $s^0$. In other words, $y$ has been mapped into +$10\times y - s^0$. \end{itemize} -To sum up, the action of $g$ on the points of $I$ is as follows: first, make a multiplication by 10, and second, add the same constant to each term, which is $\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$. +To sum up, the action of $g$ on the points of $I$ is as follows: first, make a +multiplication by 10, and second, add the same constant to each term, which is +$\dfrac{1}{10}\left(e+(-1)^{s^0}\times 2^{10-s^0}\right)-s^0$. \end{proof} \begin{remark} -Finally, chaotic iterations are elements of the large family of functions that are both chaotic and piecewise linear (like the tent map). +Finally, chaotic iterations are elements of the large family of functions that +are both chaotic and piecewise linear (like the tent map). \end{remark} \subsection{Comparison of the two metrics on $\big[ 0, 2^\mathsf{N} \big[$} -The two propositions bellow allow to compare our two distances on $\big[ 0, 2^\mathsf{N} \big[$: +The two propositions bellow allow to compare our two distances on $\big[ 0, +2^\mathsf{N} \big[$: \begin{proposition} -Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0, 2^\mathsf{N} \big[, D~\right)$ is not continuous. +Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,\Delta~\right) \to \left(~\big[ 0, +2^\mathsf{N} \big[, D~\right)$ is not continuous. \end{proposition} \begin{proof} -The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is such that: +The sequence $x^n = 1,999\hdots 999$ constituted by $n$ 9 as decimal part, is +such that: \begin{itemize} \item $\Delta (x^n,2) \to 0.$ \item But $D(x^n,2) \geqslant 1$, then $D(x^n,2)$ does not converge to 0. @@ -337,16 +1171,25 @@ The sequential characterization of the continuity concludes the demonstration. A contrario: \begin{proposition} -Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0, 2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. +Id: $\left(~\big[ 0, 2^\mathsf{N} \big[,D~\right) \to \left(~\big[ 0, +2^\mathsf{N} \big[, \Delta ~\right)$ is a continuous fonction. \end{proposition} \begin{proof} -If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given threshold, because $D_e$ only returns integers. So, after this threshold, the integral parts of all the $x^n$ are equal to the integral part of $x$. - -Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k \in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This means that for all $k$, an index $N_k$ can be found such that, $\forall n \geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the result. +If $D(x^n,x) \to 0$, then $D_e(x^n,x) = 0$ at least for $n$ larger than a given +threshold, because $D_e$ only returns integers. So, after this threshold, the +integral parts of all the $x^n$ are equal to the integral part of $x$. + +Additionally, $D_s(x^n, x) \to 0$, then $\forall k \in \mathds{N}^*, \exists N_k +\in \mathds{N}, n \geqslant N_k \Rightarrow D_s(x^n,x) \leqslant 10^{-k}$. This +means that for all $k$, an index $N_k$ can be found such that, $\forall n +\geqslant N_k$, all the $x^n$ have the same $k$ firsts digits, which are the +digits of $x$. We can deduce the convergence $\Delta(x^n,x) \to 0$, and thus the +result. \end{proof} -The conclusion of these propositions is that the proposed metric is more precise than the Euclidian distance, that is: +The conclusion of these propositions is that the proposed metric is more precise +than the Euclidian distance, that is: \begin{corollary} $D$ is finer than the Euclidian distance $\Delta$. @@ -355,9 +1198,12 @@ $D$ is finer than the Euclidian distance $\Delta$. This corollary can be reformulated as follows: \begin{itemize} -\item The topology produced by $\Delta$ is a subset of the topology produced by $D$. +\item The topology produced by $\Delta$ is a subset of the topology produced by +$D$. \item $D$ has more open sets than $\Delta$. -\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than to converge with the one inherited by $\Delta$, which is denoted here by $\tau_\Delta$. +\item It is harder to converge for the topology $\tau_D$ inherited by $D$, than +to converge with the one inherited by $\Delta$, which is denoted here by +$\tau_\Delta$. \end{itemize} @@ -368,82 +1214,47 @@ This corollary can be reformulated as follows: \subsubsection{Chaos according to Devaney} -We have recalled previously that the chaotic iterations $\left(\Go, \mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We can deduce that they are chaotic on $\mathds{R}$ too, when considering the order topology, because: +We have recalled previously that the chaotic iterations $\left(\Go, +\mathcal{X}_d\right)$ are chaotic according to the formulation of Devaney. We +can deduce that they are chaotic on $\mathds{R}$ too, when considering the order +topology, because: \begin{itemize} -\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10} \big[_D\right)$ are semiconjugate by $\varphi$, -\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic according to Devaney, because the semiconjugacy preserve this character. -\item But the topology generated by $D$ is finer than the topology generated by the Euclidian distance $\Delta$ -- which is the order topology. -\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order topology on $\mathds{R}$. +\item $\left(\Go, \mathcal{X}_d\right)$ and $\left(g, \big[ 0, 2^{10} +\big[_D\right)$ are semiconjugate by $\varphi$, +\item Then $\left(g, \big[ 0, 2^{10} \big[_D\right)$ is a system chaotic +according to Devaney, because the semiconjugacy preserve this character. +\item But the topology generated by $D$ is finer than the topology generated by +the Euclidian distance $\Delta$ -- which is the order topology. +\item According to Theorem \ref{Th:chaos et finesse}, we can deduce that the +chaotic iterations $g$ are indeed chaotic, as defined by Devaney, for the order +topology on $\mathds{R}$. \end{itemize} This result can be formulated as follows. \begin{theorem} \label{th:IC et topologie de l'ordre} -The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the order topology. +The chaotic iterations $g$ on $\mathds{R}$ are chaotic according to the +Devaney's formulation, when $\mathds{R}$ has his usual topology, which is the +order topology. \end{theorem} -Indeed this result is weaker than the theorem establishing the chaos for the finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre} still remains important. Indeed, we have studied in our previous works a set different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$), in order to be as close as possible from the computer: the properties of disorder proved theoretically will then be preserved when computing. However, we could wonder whether this change does not lead to a disorder of a lower quality. In other words, have we replaced a situation of a good disorder lost when computing, to another situation of a disorder preserved but of bad quality. Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary. +Indeed this result is weaker than the theorem establishing the chaos for the +finer topology $d$. However the Theorem \ref{th:IC et topologie de l'ordre} +still remains important. Indeed, we have studied in our previous works a set +different from the usual set of study ($\mathcal{X}$ instead of $\mathds{R}$), +in order to be as close as possible from the computer: the properties of +disorder proved theoretically will then be preserved when computing. However, we +could wonder whether this change does not lead to a disorder of a lower quality. +In other words, have we replaced a situation of a good disorder lost when +computing, to another situation of a disorder preserved but of bad quality. +Theorem \ref{th:IC et topologie de l'ordre} prove exactly the contrary. -\section{Efficient prng based on chaotic iterations} - -On parle du séquentiel avec des nombres 64 bits\\ - -Faire le lien avec le paragraphe précédent (je considère que la stratégie s'appelle $S^i$\\ - -In order to implement efficiently a PRNG based on chaotic iterations it is -possible to improve previous works [ref]. One solution consists in considering -that the strategy used $S^i$ contains all the bits for which the negation is -achieved out. Then instead of applying the negation on these bits we can simply -apply the xor operator between the current number and the strategy $S^i$. In -order to obtain the strategy we also use a classical PRNG. - -\begin{figure}[htbp] -\begin{center} -\fbox{ -\begin{minipage}{14cm} -unsigned int CIprng() \{\\ - static unsigned int x = 123123123;\\ - unsigned long t1 = xorshift();\\ - unsigned long t2 = xor128();\\ - unsigned long t3 = xorwow();\\ - x = x\textasciicircum (unsigned int)t1;\\ - x = x\textasciicircum (unsigned int)(t2$>>$32);\\ - x = x\textasciicircum (unsigned int)(t3$>>$32);\\ - x = x\textasciicircum (unsigned int)t2;\\ - x = x\textasciicircum (unsigned int)(t1$>>$32);\\ - x = x\textasciicircum (unsigned int)t3;\\ - return x;\\ -\} -\end{minipage} -} -\end{center} -\caption{sequential Chaotic Iteration PRNG} -\label{algo:seqCIprng} -\end{figure} - -In Figure~\ref{algo:seqCIprng} a sequential version of our chaotic iterations -based PRNG is presented. This version uses three classical 64 bits PRNG: the -\texttt{xorshift}, the \texttt{xor128} and the \texttt{xorwow}. These three -PRNGs are presented in~\cite{Marsaglia2003}. As each PRNG used works with -64-bits and as our PRNG works with 32 bits, the use of \texttt{(unsigned int)} -selects the 32 least significant bits whereas \texttt{(unsigned int)(t3$>>$32)} -selects the 32 most significants bits of the variable \texttt{t}. This version -sucesses the BigCrush of the TestU01 battery [P. L’ecuyer and - R. Simard. Testu01]. - -\section{Efficient prng based on chaotic iterations on GPU} - -On parle du passage du sequentiel au GPU -\section{Experiments} -On passe le BigCrush\\ -On donne des temps de générations sur GPU/CPU\\ -On donne des temps de générations de nombre sur GPU puis on rappatrie sur CPU / CPU ? bof bof, on verra \section{Conclusion}