X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/5ac19ee235bd1e798057121a7142819923af901d..016edf5f7ca01fdf537b4abcb6de87d75c604510:/prng_gpu.tex diff --git a/prng_gpu.tex b/prng_gpu.tex index 65c2f41..57526f2 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -7,6 +7,7 @@ \usepackage{amscd} \usepackage{moreverb} \usepackage{commath} +\usepackage{algorithm2e} \usepackage[standard]{ntheorem} % Pour mathds : les ensembles IR, IN, etc. @@ -19,6 +20,8 @@ % Pour faire des sous-figures dans les figures \usepackage{subfigure} +\usepackage{color} + \newtheorem{notation}{Notation} \newcommand{\X}{\mathcal{X}} @@ -28,9 +31,13 @@ \newcommand{\BN}{\mathds{B}^\mathsf{N}} \let\sur=\overline +\newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}} \title{Efficient generation of pseudo random numbers based on chaotic iterations on GPU} \begin{document} + +\author{Jacques M. Bahi, Rapha\"{e}l Couturier, and Christophe Guyeux\thanks{Authors in alphabetic order}} + \maketitle \begin{abstract} @@ -41,17 +48,327 @@ This is the abstract Interet des itérations chaotiques pour générer des nombre alea\\ Interet de générer des nombres alea sur GPU +\alert{RC, un petit state-of-the-art sur les PRNGs sur GPU ?} ... -\section{Chaotic iterations} -Présentation des itérations chaotiques +\section{Basic Recalls} +\label{section:BASIC RECALLS} +This section is devoted to basic definitions and terminologies in the fields of topological chaos and chaotic iterations. +\subsection{Devaney's chaotic dynamical systems} + +In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$ denotes the $k^{th}$ composition of a function $f$. Finally, the following notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$. + + +Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f : \mathcal{X} \rightarrow \mathcal{X}$. + +\begin{definition} +$f$ is said to be \emph{topologically transitive} if, for any pair of open sets $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq \varnothing$. +\end{definition} + +\begin{definition} +An element $x$ is a \emph{periodic point} for $f$ of period $n\in \mathds{N}^*$ if $f^{n}(x)=x$.% The set of periodic points of $f$ is denoted $Per(f).$ +\end{definition} + +\begin{definition} +$f$ is said to be \emph{regular} on $(\mathcal{X}, \tau)$ if the set of periodic points for $f$ is dense in $\mathcal{X}$: for any point $x$ in $\mathcal{X}$, any neighborhood of $x$ contains at least one periodic point (without necessarily the same period). +\end{definition} + + +\begin{definition} +$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. +\end{definition} + +The chaos property is strongly linked to the notion of ``sensitivity'', defined on a metric space $(\mathcal{X},d)$ by: + +\begin{definition} +\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions} +if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that $d\left(f^{n}(x), f^{n}(y)\right) >\delta $. + +$\delta$ is called the \emph{constant of sensitivity} of $f$. +\end{definition} + +Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is chaotic and $(\mathcal{X}, d)$ is a metric space, then $f$ has the property of sensitive dependence on initial conditions (this property was formerly an element of the definition of chaos). To sum up, quoting Devaney in~\cite{Devaney}, a chaotic dynamical system ``is unpredictable because of the sensitive dependence on initial conditions. It cannot be broken down or simplified into two subsystems which do not interact because of topological transitivity. And in the midst of this random behavior, we nevertheless have an element of regularity''. Fundamentally different behaviors are consequently possible and occur in an unpredictable way. + + +\subsection{Chaotic iterations} +\label{sec:chaotic iterations} -\section{The phase space is an interval of the real line} +Let us consider a \emph{system} with a finite number $\mathsf{N} \in +\mathds{N}^*$ of elements (or \emph{cells}), so that each cell has a +Boolean \emph{state}. Having $\mathsf{N}$ Boolean values for these + cells leads to the definition of a particular \emph{state of the +system}. A sequence which elements belong to $\llbracket 1;\mathsf{N} +\rrbracket $ is called a \emph{strategy}. The set of all strategies is +denoted by $\mathbb{S}.$ + +\begin{definition} +\label{Def:chaotic iterations} +The set $\mathds{B}$ denoting $\{0,1\}$, let +$f:\mathds{B}^{\mathsf{N}}\longrightarrow \mathds{B}^{\mathsf{N}}$ be +a function and $S\in \mathbb{S}$ be a strategy. The so-called +\emph{chaotic iterations} are defined by $x^0\in +\mathds{B}^{\mathsf{N}}$ and +$$ +\forall n\in \mathds{N}^{\ast }, \forall i\in +\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{ +\begin{array}{ll} + x_i^{n-1} & \text{ if }S^n\neq i \\ + \left(f(x^{n-1})\right)_{S^n} & \text{ if }S^n=i. +\end{array}\right. +$$ +\end{definition} + +In other words, at the $n^{th}$ iteration, only the $S^{n}-$th cell is +\textquotedblleft iterated\textquotedblright . Note that in a more +general formulation, $S^n$ can be a subset of components and +$\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by +$\left(f(x^{k})\right)_{S^{n}}$, where $k