X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/80c5c05c07373d50d1af355c7a25a336a12f7d73..f3efb657ffed3b779ad71dcf80a7149d586f1a38:/prng_gpu.tex diff --git a/prng_gpu.tex b/prng_gpu.tex index 00752c7..d7e4664 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -996,9 +996,9 @@ tab1, tab2: Arrays containing combinations of size combination\_size\;} o2 = threadIdx-offset+tab2[offset]\; \For{i=1 to n} { t=xor-like()\; - t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\; + t=t $\hat{ }$ shmem[o1] $\hat{ }$ shmem[o2]\; shared\_mem[threadId]=t\; - x = x $\oplus$ t\; + x = x $\hat{ }$ t\; store the new PRNG in NewNb[NumThreads*threadId+i]\; } @@ -1082,7 +1082,7 @@ As a comparison, Listing~\ref{algo:seqCIPRNG} leads to the generation of In Figure~\ref{fig:time_bbs_gpu} we highlight the performances of the optimized BBS-based PRNG on GPU. On the Tesla C1060 we -obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s, which is +obtain approximately 700MSample/s and on the GTX 280 about 670MSample/s, which is obviously slower than the xorlike-based PRNG on GPU. However, we will show in the next sections that this new PRNG has a strong level of security, which is necessary paid by a speed @@ -1305,9 +1305,9 @@ tab: 2D Arrays containing 16 combinations (in first dimension) of size combinat t|=BBS1(bbs1)\&7\; t<<=BBS7(bbs7)\&3\; t|=BBS2(bbs2)\&7\; - t=t$\oplus$shmem[o1]$\oplus$shmem[o2]\; + t=t $\hat{ }$ shmem[o1] $\hat{ }$ shmem[o2]\; shared\_mem[threadId]=t\; - x = x $\oplus$ t\; + x = x $\hat{ }$ t\; store the new PRNG in NewNb[NumThreads*threadId+i]\; }