X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/860ecbe3a673a4ac258e24e6c0284a56e3427b6e..ddb01e4b5bfe53afe6dba0b77f3d5322ac38c81f:/prng_gpu.tex?ds=sidebyside diff --git a/prng_gpu.tex b/prng_gpu.tex index 34ec700..3228083 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -11,6 +11,8 @@ \usepackage[ruled,vlined]{algorithm2e} \usepackage{listings} \usepackage[standard]{ntheorem} +\usepackage{algorithmic} +\usepackage{slashbox} % Pour mathds : les ensembles IR, IN, etc. \usepackage{dsfont} @@ -416,7 +418,7 @@ the metric space $(\mathcal{X},d)$. \end{proposition} The chaotic property of $G_f$ has been firstly established for the vectorial -Boolean negation $f(x_1,\hdots, x_\mathsf{N}) = (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly +Boolean negation $f_0(x_1,\hdots, x_\mathsf{N}) = (\overline{x_1},\hdots, \overline{x_\mathsf{N}})$ \cite{guyeux10}. To obtain a characterization, we have secondly introduced the notion of asynchronous iteration graph recalled bellow. Let $f$ be a map from $\mathds{B}^\mathsf{N}$ to itself. The @@ -473,33 +475,58 @@ Let us finally remark that the vectorial negation satisfies the hypotheses of bo We have proposed in~\cite{bgw09:ip} a new family of generators that receives two PRNGs as inputs. These two generators are mixed with chaotic iterations, -leading thus to a new PRNG that improves the statistical properties of each -generator taken alone. Furthermore, our generator -possesses various chaos properties that none of the generators used as input +leading thus to a new PRNG that +\begin{color}{red} +should improves the statistical properties of each +generator taken alone. +Furthermore, the generator obtained by this way possesses various chaos properties that none of the generators used as input present. + \begin{algorithm}[h!] \begin{small} \KwIn{a function $f$, an iteration number $b$, an initial configuration $x^0$ ($n$ bits)} \KwOut{a configuration $x$ ($n$ bits)} $x\leftarrow x^0$\; -$k\leftarrow b + \textit{XORshift}(b)$\; +$k\leftarrow b + PRNG_1(b)$\; \For{$i=0,\dots,k$} { -$s\leftarrow{\textit{XORshift}(n)}$\; +$s\leftarrow{PRNG_2(n)}$\; $x\leftarrow{F_f(s,x)}$\; } return $x$\; \end{small} -\caption{PRNG with chaotic functions} +\caption{An arbitrary round of $Old~ CI~ PRNG_f(PRNG_1,PRNG_2)$} \label{CI Algorithm} \end{algorithm} +This generator is synthesized in Algorithm~\ref{CI Algorithm}. +It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation des IC chaotiques}; +an integer $b$, ensuring that the number of executed iterations +between two outputs is at least $b$ +and at most $2b+1$; and an initial configuration $x^0$. +It returns the new generated configuration $x$. Internally, it embeds two +inputted generators $PRNG_i(k), i=1,2$, + which must return integers +uniformly distributed +into $\llbracket 1 ; k \rrbracket$. +For instance, these PRNGs can be the \textit{XORshift}~\cite{Marsaglia2003}, +being a category of very fast PRNGs designed by George Marsaglia +that repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number +with a bit shifted version of it. Such a PRNG, which has a period of +$2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. +This XORshift, or any other reasonable PRNG, is used +in our own generator to compute both the number of iterations between two +outputs (provided by $PRNG_1$) and the strategy elements ($PRNG_2$). + +%This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones. + + \begin{algorithm}[h!] \begin{small} \KwIn{the internal configuration $z$ (a 32-bit word)} @@ -515,31 +542,95 @@ return $y$\; \end{algorithm} +\subsection{A ``New CI PRNG''} + +In order to make the Old CI PRNG usable in practice, we have proposed +an adapted version of the chaotic iteration based generator in~\cite{bg10:ip}. +In this ``New CI PRNG'', we prevent from changing twice a given +bit between two outputs. +This new generator is designed by the following process. + +First of all, some chaotic iterations have to be done to generate a sequence +$\left(x^n\right)_{n\in\mathds{N}} \in \left(\mathds{B}^{32}\right)^\mathds{N}$ +of Boolean vectors, which are the successive states of the iterated system. +Some of these vectors will be randomly extracted and our pseudo-random bit +flow will be constituted by their components. Such chaotic iterations are +realized as follows. Initial state $x^0 \in \mathds{B}^{32}$ is a Boolean +vector taken as a seed and chaotic strategy $\left(S^n\right)_{n\in\mathds{N}}\in +\llbracket 1, 32 \rrbracket^\mathds{N}$ is +an \emph{irregular decimation} of $PRNG_2$ sequence, as described in +Algorithm~\ref{Chaotic iteration1}. + +Then, at each iteration, only the $S^n$-th component of state $x^n$ is +updated, as follows: $x_i^n = x_i^{n-1}$ if $i \neq S^n$, else $x_i^n = \overline{x_i^{n-1}}$. +Such a procedure is equivalent to achieve chaotic iterations with +the Boolean vectorial negation $f_0$ and some well-chosen strategies. +Finally, some $x^n$ are selected +by a sequence $m^n$ as the pseudo-random bit sequence of our generator. +$(m^n)_{n \in \mathds{N}} \in \mathcal{M}^\mathds{N}$ is computed from $PRNG_1$, where $\mathcal{M}\subset \mathds{N}^*$ is a finite nonempty set of integers. + +The basic design procedure of the New CI generator is summarized in Algorithm~\ref{Chaotic iteration1}. +The internal state is $x$, the output state is $r$. $a$ and $b$ are those computed by the two input +PRNGs. Lastly, the value $g(a)$ is an integer defined as in Eq.~\ref{Formula}. +This function is required to make the outputs uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$ +(the reader is referred to~\cite{bg10:ip} for more information). +\begin{equation} +\label{Formula} +m^n = g(y^n)= +\left\{ +\begin{array}{l} +0 \text{ if }0 \leqslant{y^n}<{C^0_{32}},\\ +1 \text{ if }{C^0_{32}} \leqslant{y^n}<\sum_{i=0}^1{C^i_{32}},\\ +2 \text{ if }\sum_{i=0}^1{C^i_{32}} \leqslant{y^n}<\sum_{i=0}^2{C^i_{32}},\\ +\vdots~~~~~ ~~\vdots~~~ ~~~~\\ +N \text{ if }\sum_{i=0}^{N-1}{C^i_{32}}\leqslant{y^n}<1.\\ +\end{array} +\right. +\end{equation} - -This generator is synthesized in Algorithm~\ref{CI Algorithm}. -It takes as input: a Boolean function $f$ satisfying Theorem~\ref{Th:Caractérisation des IC chaotiques}; -an integer $b$, ensuring that the number of executed iterations is at least $b$ -and at most $2b+1$; and an initial configuration $x^0$. -It returns the new generated configuration $x$. Internally, it embeds two -\textit{XORshift}$(k)$ PRNGs~\cite{Marsaglia2003} that return integers -uniformly distributed -into $\llbracket 1 ; k \rrbracket$. -\textit{XORshift} is a category of very fast PRNGs designed by George Marsaglia, -which repeatedly uses the transform of exclusive or (XOR, $\oplus$) on a number -with a bit shifted version of it. This PRNG, which has a period of -$2^{32}-1=4.29\times10^9$, is summed up in Algorithm~\ref{XORshift}. It is used -in our PRNG to compute the strategy length and the strategy elements. - -This former generator has successively passed various batteries of statistical tests, as the NIST~\cite{bcgr11:ip}, DieHARD~\cite{Marsaglia1996}, and TestU01~\cite{LEcuyerS07} ones. +\begin{algorithm} +\textbf{Input:} the internal state $x$ (32 bits)\\ +\textbf{Output:} a state $r$ of 32 bits +\begin{algorithmic}[1] +\FOR{$i=0,\dots,N$} +{ +\STATE$d_i\leftarrow{0}$\; +} +\ENDFOR +\STATE$a\leftarrow{PRNG_1()}$\; +\STATE$m\leftarrow{g(a)}$\; +\STATE$k\leftarrow{m}$\; +\WHILE{$i=0,\dots,k$} + +\STATE$b\leftarrow{PRNG_2()~mod~\mathsf{N}}$\; +\STATE$S\leftarrow{b}$\; + \IF{$d_S=0$} + { +\STATE $x_S\leftarrow{ \overline{x_S}}$\; +\STATE $d_S\leftarrow{1}$\; + + } + \ELSIF{$d_S=1$} + { +\STATE $k\leftarrow{ k+1}$\; + }\ENDIF +\ENDWHILE\\ +\STATE $r\leftarrow{x}$\; +\STATE return $r$\; +\medskip +\caption{An arbitrary round of the new CI generator} +\label{Chaotic iteration1} +\end{algorithmic} +\end{algorithm} +\end{color} \subsection{Improving the Speed of the Former Generator} -Instead of updating only one cell at each iteration, we can try to choose a -subset of components and to update them together. Such an attempt leads -to a kind of merger of the two sequences used in Algorithm -\ref{CI Algorithm}. When the updating function is the vectorial negation, +Instead of updating only one cell at each iteration,\begin{color}{red} we now propose to choose a +subset of components and to update them together, for speed improvements. Such a proposition leads\end{color} +to a kind of merger of the two sequences used in Algorithms +\ref{CI Algorithm} and \ref{Chaotic iteration1}. When the updating function is the vectorial negation, this algorithm can be rewritten as follows: \begin{equation} @@ -549,7 +640,7 @@ x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n, \end{array} \right. -\label{equation Oplus} +\label{equation Oplus0} \end{equation} where $\oplus$ is for the bitwise exclusive or between two integers. This rewriting can be understood as follows. The $n-$th term $S^n$ of the @@ -559,7 +650,7 @@ as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th component of this state (a binary digit) changes if and only if the $k-$th digit in the binary decomposition of $S^n$ is 1. -The single basic component presented in Eq.~\ref{equation Oplus} is of +The single basic component presented in Eq.~\ref{equation Oplus0} is of ordinary use as a good elementary brick in various PRNGs. It corresponds to the following discrete dynamical system in chaotic iterations: @@ -580,8 +671,8 @@ than the ones presented in Definition \ref{Def:chaotic iterations} because, inst we select a subset of components to change. -Obviously, replacing Algorithm~\ref{CI Algorithm} by -Equation~\ref{equation Oplus}, which is possible when the iteration function is +Obviously, replacing the previous CI PRNG Algorithms by +Equation~\ref{equation Oplus0}, which is possible when the iteration function is the vectorial negation, leads to a speed improvement. However, proofs of chaos obtained in~\cite{bg10:ij} have been established only for chaotic iterations of the form presented in Definition @@ -835,6 +926,283 @@ have $d((S,E),(\tilde S,E))<\epsilon$. \end{proof} +\begin{color}{red} +\section{Statistical Improvements Using Chaotic Iterations} + +\label{The generation of pseudo-random sequence} + + +Let us now explain why we are reasonable grounds to believe that chaos +can improve statistical properties. +We will show in this section that, when mixing defective PRNGs with +chaotic iterations, the result presents better statistical properties +(this section summarizes the work of~\cite{bfg12a:ip}). + +\subsection{Details of some Existing Generators} + +The list of defective PRNGs we will use +as inputs for the statistical tests to come is introduced here. + +Firstly, the simple linear congruency generator (LCGs) will be used. +It is defined by the following recurrence: +\begin{equation} +x^n = (ax^{n-1} + c)~mod~m +\label{LCG} +\end{equation} +where $a$, $c$, and $x^0$ must be, among other things, non-negative and less than +$m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer as two (resp. three) +combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}. + +Secondly, the multiple recursive generators (MRGs) will be used too, which +are based on a linear recurrence of order +$k$, modulo $m$~\cite{LEcuyerS07}: +\begin{equation} +x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m +\label{MRG} +\end{equation} +Combination of two MRGs (referred as 2MRGs) is also used in these experimentations. + +Generators based on linear recurrences with carry will be regarded too. +This family of generators includes the add-with-carry (AWC) generator, based on the recurrence: +\begin{equation} +\label{AWC} +\begin{array}{l} +x^n = (x^{n-r} + x^{n-s} + c^{n-1})~mod~m, \\ +c^n= (x^{n-r} + x^{n-s} + c^{n-1}) / m, \end{array}\end{equation} +the SWB generator, having the recurrence: +\begin{equation} +\label{SWB} +\begin{array}{l} +x^n = (x^{n-r} - x^{n-s} - c^{n-1})~mod~m, \\ +c^n=\left\{ +\begin{array}{l} +1 ~~~~~\text{if}~ (x^{i-r} - x^{i-s} - c^{i-1})<0\\ +0 ~~~~~\text{else},\end{array} \right. \end{array}\end{equation} +and the SWC generator designed by R. Couture, which is based on the following recurrence: +\begin{equation} +\label{SWC} +\begin{array}{l} +x^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ mod ~ 2^w, \\ +c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end{array}\end{equation} + +Then the generalized feedback shift register (GFSR) generator has been implemented, that is: +\begin{equation} +x^n = x^{n-r} \oplus x^{n-k} +\label{GFSR} +\end{equation} + + +Finally, the nonlinear inversive generator~\cite{LEcuyerS07} has been regarded too, which is: + +\begin{equation} +\label{INV} +\begin{array}{l} +x^n=\left\{ +\begin{array}{ll} +(a^1 + a^2 / z^{n-1})~mod~m & \text{if}~ z^{n-1} \neq 0 \\ +a^1 & \text{if}~ z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation} + + + + + +\subsection{Statistical tests} +\label{Security analysis} + +Three batteries of tests are reputed and usually used +to evaluate the statistical properties of newly designed pseudorandom +number generators. These batteries are named DieHard~\cite{Marsaglia1996}, +the NIST suite~\cite{ANDREW2008}, and the most stringent one called +TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries. + + + +\label{Results and discussion} +\begin{table*} +\renewcommand{\arraystretch}{1.3} +\caption{NIST and DieHARD tests suite passing rates for PRNGs without CI} +\label{NIST and DieHARD tests suite passing rate the for PRNGs without CI} +\centering + \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|} + \hline\hline +Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline +\backslashbox{\textbf{$Tests$}} {\textbf{$PRNG$}} & LCG& MRG& AWC & SWB & SWC & GFSR & INV & LCG2& LCG3& MRG2 \\ \hline +NIST & 11/15 & 14/15 &\textbf{15/15} & \textbf{15/15} & 14/15 & 14/15 & 14/15 & 14/15& 14/15& 14/15 \\ \hline +DieHARD & 16/18 & 16/18 & 15/18 & 16/18 & \textbf{18/18} & 16/18 & 16/18 & 16/18& 16/18& 16/18\\ \hline +\end{tabular} +\end{table*} + +Table~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} shows the +results on the two firsts batteries recalled above, indicating that all the PRNGs presented +in the previous section +cannot pass all these tests. In other words, the statistical quality of these PRNGs cannot +fulfill the up-to-date standards presented previously. We have shown in~\cite{bfg12a:ip} that the use of chaotic +iterations can solve this issue. +More precisely, to +illustrate the effects of chaotic iterations on these defective PRNGs, experiments have been divided in three parts~\cite{bfg12a:ip}: +\begin{enumerate} + \item \textbf{Single CIPRNG}: The PRNGs involved in CI computing are of the same category. + \item \textbf{Mixed CIPRNG}: Two different types of PRNGs are mixed during the chaotic iterations process. + \item \textbf{Multiple CIPRNG}: The generator is obtained by repeating the composition of the iteration function as follows: $x^0\in \mathds{B}^{\mathsf{N}}$, and $\forall n\in \mathds{N}^{\ast },\forall i\in \llbracket1;\mathsf{N}\rrbracket, x_i^n=$ +\begin{equation} +\begin{array}{l} +\left\{ +\begin{array}{l} +x_i^{n-1}~~~~~\text{if}~S^n\neq i \\ +\forall j\in \llbracket1;\mathsf{m}\rrbracket,f^m(x^{n-1})_{S^{nm+j}}~\text{if}~S^{nm+j}=i.\end{array} \right. \end{array} +\end{equation} +$m$ is called the \emph{functional power}. +\end{enumerate} + + +We have performed statistical analysis of each of the aforementioned CIPRNGs. +The results are reproduced in Tables~\ref{NIST and DieHARD tests suite passing rate the for PRNGs without CI} and \ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}. +The scores written in boldface indicate that all the tests have been passed successfully, whereas an asterisk ``*'' means that the considered passing rate has been improved. + +\subsubsection{Tests based on the Single CIPRNG} + +\begin{table*} +\renewcommand{\arraystretch}{1.3} +\caption{NIST and DieHARD tests suite passing rates for PRNGs with CI} +\label{NIST and DieHARD tests suite passing rate the for single CIPRNGs} +\centering + \begin{tabular}{|l||c|c|c|c|c|c|c|c|c|c|c|c|} + \hline +Types of PRNGs & \multicolumn{2}{c|}{Linear PRNGs} & \multicolumn{4}{c|}{Lagged PRNGs} & \multicolumn{1}{c|}{ICG PRNGs} & \multicolumn{3}{c|}{Mixed PRNGs}\\ \hline +\backslashbox{\textbf{$Tests$}} {\textbf{$Single~CIPRNG$}} & LCG & MRG & AWC & SWB & SWC & GFSR & INV& LCG2 & LCG3& MRG2 \\ \hline\hline +Old CIPRNG\\ \hline \hline +NIST & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} & \textbf{15/15} & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline +DieHARD & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} * \\ \hline +New CIPRNG\\ \hline \hline +NIST & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} & \textbf{15/15} & \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} * & \textbf{15/15} * & \textbf{15/15} \\ \hline +DieHARD & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} * & \textbf{18/18} *& \textbf{18/18} *\\ \hline +Xor CIPRNG\\ \hline\hline +NIST & 14/15*& \textbf{15/15} * & \textbf{15/15} & \textbf{15/15} & 14/15 & \textbf{15/15} * & 14/15& \textbf{15/15} * & \textbf{15/15} *& \textbf{15/15} \\ \hline +DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18} & \textbf{18/18} * & 16/18 & 16/18 & 16/18& 16/18\\ \hline +\end{tabular} +\end{table*} + +The statistical tests results of the PRNGs using the single CIPRNG method are given in Table~\ref{NIST and DieHARD tests suite passing rate the for single CIPRNGs}. +We can observe that, except for the Xor CIPRNG, all of the CIPRNGs have passed the 15 tests of the NIST battery and the 18 tests of the DieHARD one. +Moreover, considering these scores, we can deduce that both the single Old CIPRNG and the single New CIPRNG are relatively steadier than the single Xor CIPRNG approach, when applying them to different PRNGs. +However, the Xor CIPRNG is obviously the fastest approach to generate a CI random sequence, and it still improves the statistical properties relative to each generator taken alone, although the test values are not as good as desired. + +Therefore, all of these three ways are interesting, for different reasons, in the production of pseudorandom numbers and, +on the whole, the single CIPRNG method can be considered to adapt to or improve all kinds of PRNGs. + +To have a realization of the Xor CIPRNG that can pass all the tests embedded into the NIST battery, the Xor CIPRNG with multiple functional powers are investigated in Section~\ref{Tests based on Multiple CIPRNG}. + + +\subsubsection{Tests based on the Mixed CIPRNG} + +To compare the previous approach with the CIPRNG design that uses a Mixed CIPRNG, we have taken into account the same inputted generators than in the previous section. +These inputted couples $(PRNG_1,PRNG_2)$ of PRNGs are used in the Mixed approach as follows: +\begin{equation} +\left\{ +\begin{array}{l} +x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\ +\forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus PRNG_1\oplus PRNG_2, +\end{array} +\right. +\label{equation Oplus} +\end{equation} + +With this Mixed CIPRNG approach, both the Old CIPRNG and New CIPRNG continue to pass all the NIST and DieHARD suites. +In addition, we can see that the PRNGs using a Xor CIPRNG approach can pass more tests than previously. +The main reason of this success is that the Mixed Xor CIPRNG has a longer period. +Indeed, let $n_{P}$ be the period of a PRNG $P$, then the period deduced from the single Xor CIPRNG approach is obviously equal to: +\begin{equation} +n_{SXORCI}= +\left\{ +\begin{array}{ll} +n_{P}&\text{if~}x^0=x^{n_{P}}\\ +2n_{P}&\text{if~}x^0\neq x^{n_{P}}.\\ +\end{array} +\right. +\label{equation Oplus} +\end{equation} + +Let us now denote by $n_{P1}$ and $n_{P2}$ the periods of respectively the $PRNG_1$ and $PRNG_2$ generators, then the period of the Mixed Xor CIPRNG will be: +\begin{equation} +n_{XXORCI}= +\left\{ +\begin{array}{ll} +LCM(n_{P1},n_{P2})&\text{if~}x^0=x^{LCM(n_{P1},n_{P2})}\\ +2LCM(n_{P1},n_{P2})&\text{if~}x^0\neq x^{LCM(n_{P1},n_{P2})}.\\ +\end{array} +\right. +\label{equation Oplus} +\end{equation} + +In Table~\ref{DieHARD fail mixex CIPRNG}, we only show the results for the Mixed CIPRNGs that cannot pass all DieHARD suites (the NIST tests are all passed). It demonstrates that Mixed Xor CIPRNG involving LCG, MRG, LCG2, LCG3, MRG2, or INV cannot pass the two following tests, namely the ``Matrix Rank 32x32'' and the ``COUNT-THE-1's'' tests contained into the DieHARD battery. Let us recall their definitions: + +\begin{itemize} + \item \textbf{Matrix Rank 32x32.} A random 32x32 binary matrix is formed, each row having a 32-bit random vector. Its rank is an integer that ranges from 0 to 32. Ranks less than 29 must be rare, and their occurences must be pooled with those of rank 29. To achieve the test, ranks of 40,000 such random matrices are obtained, and a chisquare test is performed on counts for ranks 32,31,30 and for ranks $\leq29$. + + \item \textbf{COUNT-THE-1's TEST} Consider the file under test as a stream of bytes (four per 2 bit integer). Each byte can contain from 0 to 8 1's, with probabilities 1,8,28,56,70,56,28,8,1 over 256. Now let the stream of bytes provide a string of overlapping 5-letter words, each ``letter'' taking values A,B,C,D,E. The letters are determined by the number of 1's in a byte: 0,1, or 2 yield A, 3 yields B, 4 yields C, 5 yields D and 6,7, or 8 yield E. Thus we have a monkey at a typewriter hitting five keys with various probabilities (37,56,70,56,37 over 256). There are $5^5$ possible 5-letter words, and from a string of 256,000 (over-lapping) 5-letter words, counts are made on the frequencies for each word. The quadratic form in the weak inverse of the covariance matrix of the cell counts provides a chisquare test: Q5-Q4, the difference of the naive Pearson sums of $(OBS-EXP)^2/EXP$ on counts for 5- and 4-letter cell counts. +\end{itemize} + +The reason of these fails is that the output of LCG, LCG2, LCG3, MRG, and MRG2 under the experiments are in 31-bit. Compare with the Single CIPRNG, using different PRNGs to build CIPRNG seems more efficient in improving random number quality (mixed Xor CI can 100\% pass NIST, but single cannot). + +\begin{table*} +\renewcommand{\arraystretch}{1.3} +\caption{Scores of mixed Xor CIPRNGs when considering the DieHARD battery} +\label{DieHARD fail mixex CIPRNG} +\centering + \begin{tabular}{|l||c|c|c|c|c|c|} + \hline +\backslashbox{\textbf{$PRNG_1$}} {\textbf{$PRNG_0$}} & LCG & MRG & INV & LCG2 & LCG3 & MRG2 \\ \hline\hline +LCG &\backslashbox{} {} &16/18&16/18 &16/18 &16/18 &16/18\\ \hline +MRG &16/18 &\backslashbox{} {} &16/18&16/18 &16/18 &16/18\\ \hline +INV &16/18 &16/18&\backslashbox{} {} &16/18 &16/18&16/18 \\ \hline +LCG2 &16/18 &16/18 &16/18 &\backslashbox{} {} &16/18&16/18\\ \hline +LCG3 &16/18 &16/18 &16/18&16/18&\backslashbox{} {} &16/18\\ \hline +MRG2 &16/18 &16/18 &16/18&16/18 &16/18 &\backslashbox{} {} \\ \hline +\end{tabular} +\end{table*} + +\subsubsection{Tests based on the Multiple CIPRNG} +\label{Tests based on Multiple CIPRNG} + +Until now, the combination of at most two input PRNGs has been investigated. +We now regard the possibility to use a larger number of generators to improve the statistics of the generated pseudorandom numbers, leading to the multiple functional power approach. +For the CIPRNGs which have already pass both the NIST and DieHARD suites with 2 inputted PRNGs (all the Old and New CIPRNGs, and some of the Xor CIPRNGs), it is not meaningful to consider their adaption of this multiple CIPRNG method, hence only the Multiple Xor CIPRNGs, having the following form, will be investigated. +\begin{equation} +\left\{ +\begin{array}{l} +x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket^\mathds{N} \\ +\forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^{nm}\oplus S^{nm+1}\ldots \oplus S^{nm+m-1} , +\end{array} +\right. +\label{equation Oplus} +\end{equation} + +The question is now to determine the value of the threshold $m$ (the functional power) making the multiple CIPRNG being able to pass the whole NIST battery. +Such a question is answered in Table~\ref{threshold}. + + +\begin{table*} +\renewcommand{\arraystretch}{1.3} +\caption{Functional power $m$ making it possible to pass the whole NIST battery} +\label{threshold} +\centering + \begin{tabular}{|l||c|c|c|c|c|c|c|c|} + \hline +Inputted $PRNG$ & LCG & MRG & SWC & GFSR & INV& LCG2 & LCG3 & MRG2 \\ \hline\hline +Threshold value $m$& 19 & 7 & 2& 1 & 11& 9& 3& 4\\ \hline\hline +\end{tabular} +\end{table*} + +\subsubsection{Results Summary} + +We can summarize the obtained results as follows. +\begin{enumerate} +\item The CIPRNG method is able to improve the statistical properties of a large variety of PRNGs. +\item Using different PRNGs in the CIPRNG approach is better than considering several instances of one unique PRNG. +\item The statistical quality of the outputs increases with the functional power $m$. +\end{enumerate} + +\end{color} \section{Efficient PRNG based on Chaotic Iterations} \label{sec:efficient PRNG}