X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/8f1af7e18d4d59611a7b16178ac5f32cfe541056..26a94eb935af7804c64342d5c4718e05c9e10036:/prng_gpu.tex?ds=sidebyside diff --git a/prng_gpu.tex b/prng_gpu.tex index c5fbd5d..983aa92 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -90,7 +90,13 @@ On the other side, speed is not the main requirement in cryptography: the great need is to define \emph{secure} generators able to withstand malicious attacks. Roughly speaking, an attacker should not be able in practice to make the distinction between numbers obtained with the secure generator and a true random -sequence. +sequence. \begin{color}{red} Or, in an equivalent formulation, he or she should not be +able (in practice) to predict the next bit of the generator, having the knowledge of all the +binary digits that have been already released. ``Being able in practice'' refers here +to the possibility to achieve this attack in polynomial time, and to the exponential growth +of the difficulty of this challenge when the size of the parameters of the PRNG increases. +\end{color} + Finally, a small part of the community working in this domain focuses on a third requirement, that is to define chaotic generators. The main idea is to take benefits from a chaotic dynamical system to obtain a @@ -124,10 +130,19 @@ statistical perfection refers to the ability to pass the whole {\it BigCrush} battery of tests, which is widely considered as the most stringent statistical evaluation of a sequence claimed as random. This battery can be found in the well-known TestU01 package~\cite{LEcuyerS07}. +\begin{color}{red} +More precisely, each time we performed a test on a PRNG, we ran it +twice in order to observe if all $p-$values are inside [0.01, 0.99]. In +fact, we observed that few $p-$values (less than ten) are sometimes +outside this interval but inside [0.001, 0.999], so that is why a +second run allows us to confirm that the values outside are not for +the same test. With this approach all our PRNGs pass the {\it + BigCrush} successfully and all $p-$values are at least once inside +[0.01, 0.99]. +\end{color} Chaos, for its part, refers to the well-established definition of a chaotic dynamical system proposed by Devaney~\cite{Devaney}. - In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave as a chaotic dynamical system. Such a post-treatment leads to a new category of PRNGs. We have shown that proofs of Devaney's chaos can be established for this @@ -157,8 +172,13 @@ The remainder of this paper is organized as follows. In Section~\ref{section:re and on an iteration process called ``chaotic iterations'' on which the post-treatment is based. The proposed PRNG and its proof of chaos are given in Section~\ref{sec:pseudorandom}. -Section~\ref{sec:efficient PRNG} presents an efficient -implementation of this chaotic PRNG on a CPU, whereas Section~\ref{sec:efficient PRNG +\begin{color}{red} +Section~\ref{The generation of pseudorandom sequence} illustrates the statistical +improvement related to the chaotic iteration based post-treatment, for +our previously released PRNGs and a new efficient +implementation on CPU. +\end{color} + Section~\ref{sec:efficient PRNG gpu} describes and evaluates theoretically the GPU implementation. Such generators are experimented in Section~\ref{sec:experiments}. @@ -167,7 +187,8 @@ generator is cryptographically secure, then it is the case too for the generator provided by the post-treatment. Such a proof leads to the proposition of a cryptographically secure and chaotic generator on GPU based on the famous Blum Blum Shub -in Section~\ref{sec:CSGPU}, and to an improvement of the +in Section~\ref{sec:CSGPU}, \begin{color}{red} to a practical +security evaluation in Section~\ref{sec:Practicak evaluation}, \end{color} and to an improvement of the Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}. This research work ends by a conclusion section, in which the contribution is summarized and intended future work is presented. @@ -175,7 +196,7 @@ summarized and intended future work is presented. -\section{Related works on GPU based PRNGs} +\section{Related work on GPU based PRNGs} \label{section:related works} Numerous research works on defining GPU based PRNGs have already been proposed in the @@ -234,7 +255,7 @@ with basic notions on topology (see for instance~\cite{Devaney}). \subsection{Devaney's Chaotic Dynamical Systems} - +\label{subsec:Devaney} In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$ is for the $k^{th}$ composition of a function $f$. Finally, the following @@ -480,7 +501,7 @@ We have proposed in~\cite{bgw09:ip} a new family of generators that receives two PRNGs as inputs. These two generators are mixed with chaotic iterations, leading thus to a new PRNG that \begin{color}{red} -should improves the statistical properties of each +should improve the statistical properties of each generator taken alone. Furthermore, the generator obtained by this way possesses various chaos properties that none of the generators used as input present. @@ -556,7 +577,7 @@ This new generator is designed by the following process. First of all, some chaotic iterations have to be done to generate a sequence $\left(x^n\right)_{n\in\mathds{N}} \in \left(\mathds{B}^{32}\right)^\mathds{N}$ of Boolean vectors, which are the successive states of the iterated system. -Some of these vectors will be randomly extracted and our pseudo-random bit +Some of these vectors will be randomly extracted and our pseudorandom bit flow will be constituted by their components. Such chaotic iterations are realized as follows. Initial state $x^0 \in \mathds{B}^{32}$ is a Boolean vector taken as a seed and chaotic strategy $\left(S^n\right)_{n\in\mathds{N}}\in @@ -569,14 +590,14 @@ updated, as follows: $x_i^n = x_i^{n-1}$ if $i \neq S^n$, else $x_i^n = \overlin Such a procedure is equivalent to achieve chaotic iterations with the Boolean vectorial negation $f_0$ and some well-chosen strategies. Finally, some $x^n$ are selected -by a sequence $m^n$ as the pseudo-random bit sequence of our generator. +by a sequence $m^n$ as the pseudorandom bit sequence of our generator. $(m^n)_{n \in \mathds{N}} \in \mathcal{M}^\mathds{N}$ is computed from $PRNG_1$, where $\mathcal{M}\subset \mathds{N}^*$ is a finite nonempty set of integers. The basic design procedure of the New CI generator is summarized in Algorithm~\ref{Chaotic iteration1}. The internal state is $x$, the output state is $r$. $a$ and $b$ are those computed by the two input PRNGs. Lastly, the value $g(a)$ is an integer defined as in Eq.~\ref{Formula}. -This function is required to make the outputs uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$ -(the reader is referred to~\cite{bg10:ip} for more information). +This function must be chosen such that the outputs of the resulted PRNG are uniform in $\llbracket 0, 2^\mathsf{N}-1 \rrbracket$. Function of \eqref{Formula} achieves this +goal (other candidates and more information can be found in ~\cite{bg10:ip}). \begin{equation} \label{Formula} @@ -602,8 +623,7 @@ N \text{ if }\sum_{i=0}^{N-1}{C^i_{32}}\leqslant{y^n}<1.\\ } \ENDFOR \STATE$a\leftarrow{PRNG_1()}$\; -\STATE$m\leftarrow{g(a)}$\; -\STATE$k\leftarrow{m}$\; +\STATE$k\leftarrow{g(a)}$\; \WHILE{$i=0,\dots,k$} \STATE$b\leftarrow{PRNG_2()~mod~\mathsf{N}}$\; @@ -643,7 +663,7 @@ x^0 \in \llbracket 0, 2^\mathsf{N}-1 \rrbracket, S \in \llbracket 0, 2^\mathsf{N \forall n \in \mathds{N}^*, x^n = x^{n-1} \oplus S^n, \end{array} \right. -\label{equation Oplus0} +\label{equation Oplus} \end{equation} where $\oplus$ is for the bitwise exclusive or between two integers. This rewriting can be understood as follows. The $n-$th term $S^n$ of the @@ -653,7 +673,7 @@ as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th component of this state (a binary digit) changes if and only if the $k-$th digit in the binary decomposition of $S^n$ is 1. -The single basic component presented in Eq.~\ref{equation Oplus0} is of +The single basic component presented in Eq.~\ref{equation Oplus} is of ordinary use as a good elementary brick in various PRNGs. It corresponds to the following discrete dynamical system in chaotic iterations: @@ -675,7 +695,7 @@ we select a subset of components to change. Obviously, replacing the previous CI PRNG Algorithms by -Equation~\ref{equation Oplus0}, which is possible when the iteration function is +Equation~\ref{equation Oplus}, which is possible when the iteration function is the vectorial negation, leads to a speed improvement (the resulting generator will be referred as ``Xor CI PRNG'' in what follows). @@ -935,38 +955,105 @@ have $d((S,E),(\tilde S,E))<\epsilon$. \begin{color}{red} \section{Statistical Improvements Using Chaotic Iterations} -\label{The generation of pseudo-random sequence} +\label{The generation of pseudorandom sequence} Let us now explain why we are reasonable grounds to believe that chaos can improve statistical properties. -We will show in this section that, when mixing defective PRNGs with -chaotic iterations, the result presents better statistical properties -(this section summarizes the work of~\cite{bfg12a:ip}). +We will show in this section that chaotic properties as defined in the +mathematical theory of chaos are related to some statistical tests that can be found +in the NIST battery. Furthermore, we will check that, when mixing defective PRNGs with +chaotic iterations, the new generator presents better statistical properties +(this section summarizes and extends the work of~\cite{bfg12a:ip}). + + + +\subsection{Qualitative relations between topological properties and statistical tests} + + +There are various relations between topological properties that describe an unpredictable behavior for a discrete +dynamical system on the one +hand, and statistical tests to check the randomness of a numerical sequence +on the other hand. These two mathematical disciplines follow a similar +objective in case of a recurrent sequence (to characterize an intrinsically complicated behavior for a +recurrent sequence), with two different but complementary approaches. +It is true that these illustrative links give only qualitative arguments, +and proofs should be provided later to make such arguments irrefutable. However +they give a first understanding of the reason why we think that chaotic properties should tend +to improve the statistical quality of PRNGs. + +Let us now list some of these relations between topological properties defined in the mathematical +theory of chaos and tests embedded into the NIST battery. Such relations need to be further +investigated, but they presently give a first illustration of a trend to search similar properties in the +two following fields: mathematical chaos and statistics. + + +\begin{itemize} + \item \textbf{Regularity}. As stated in Section~\ref{subsec:Devaney}, a chaotic dynamical system must +have an element of regularity. Depending on the chosen definition of chaos, this element can be the existence of +a dense orbit, the density of periodic points, etc. The key idea is that a dynamical system with no periodicity +is not as chaotic as a system having periodic orbits: in the first situation, we can predict something and gain a +knowledge about the behavior of the system, that is, it never enter into a loop. A similar importance for regularity is emphasized in +the two following tests~\cite{Nist10}: + \begin{itemize} + \item \textbf{Non-overlapping Template Matching Test}. Detect generators that produce too many occurrences of a given non-periodic (aperiodic) pattern. + \item \textbf{Discrete Fourier Transform (Spectral) Test}. Detect periodic features (i.e., repetitive patterns that are near each other) in the tested sequence that would indicate a deviation from the assumption of randomness. + \end{itemize} + +\item \textbf{Transitivity}. This topological property introduced previously states that the dynamical system is intrinsically complicated: it cannot be simplified into +two subsystems that do not interact, as we can find in any neighborhood of any point another point whose orbit visits the whole phase space. +This focus on the places visited by orbits of the dynamical system takes various nonequivalent formulations in the mathematical theory +of chaos, namely: transitivity, strong transitivity, total transitivity, topological mixing, and so on~\cite{bg10:ij}. A similar attention +is brought on stated visited during a random walk in the two tests below~\cite{Nist10}: + \begin{itemize} + \item \textbf{Random Excursions Variant Test}. Detect deviations from the expected number of visits to various states in the random walk. + \item \textbf{Random Excursions Test}. Determine if the number of visits to a particular state within a cycle deviates from what one would expect for a random sequence. + \end{itemize} + +\item \textbf{Chaos according to Li and Yorke}. Two points of the phase space $(x,y)$ define a couple of Li-Yorke when $\limsup_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))>0$ et $\liminf_{n \rightarrow +\infty} d(f^{(n)}(x), f^{(n)}(y))=0$, meaning that their orbits always oscillates as the iterations pass. When a system is compact and contains an uncountable set of such points, it is claimed as chaotic according +to Li-Yorke~\cite{Li75,Ruette2001}. This property is related to the following test~\cite{Nist10}. + \begin{itemize} + \item \textbf{Runs Test}. To determine whether the number of runs of ones and zeros of various lengths is as expected for a random sequence. In particular, this test determines whether the oscillation between such zeros and ones is too fast or too slow. + \end{itemize} + \item \textbf{Topological entropy}. Both in topological and statistical fields. + \begin{itemize} +\item \textbf{Approximate Entropy Test}. Compare the frequency of overlapping blocks of two consecutive/adjacent lengths (m and m+1) against the expected result for a random sequence (m is the length of each block). + \end{itemize} + + \item \textbf{Non-linearity, complexity}. + \begin{itemize} +\item \textbf{Binary Matrix Rank Test}. Check for linear dependence among fixed length substrings of the original sequence. +\item \textbf{Linear Complexity Test}. Determine whether or not the sequence is complex enough to be considered random (M is the length in bits of a block). + \end{itemize} +\end{itemize} + + + + \subsection{Details of some Existing Generators} The list of defective PRNGs we will use as inputs for the statistical tests to come is introduced here. -Firstly, the simple linear congruency generator (LCGs) will be used. -It is defined by the following recurrence: +Firstly, the simple linear congruency generators (LCGs) will be used. +They are defined by the following recurrence: \begin{equation} -x^n = (ax^{n-1} + c)~mod~m +x^n = (ax^{n-1} + c)~mod~m, \label{LCG} \end{equation} where $a$, $c$, and $x^0$ must be, among other things, non-negative and less than $m$~\cite{LEcuyerS07}. In what follows, 2LCGs and 3LCGs refer as two (resp. three) combinations of such LCGs. For further details, see~\cite{bfg12a:ip,combined_lcg}. -Secondly, the multiple recursive generators (MRGs) will be used too, which +Secondly, the multiple recursive generators (MRGs) will be used, which are based on a linear recurrence of order $k$, modulo $m$~\cite{LEcuyerS07}: \begin{equation} -x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m +x^n = (a^1x^{n-1}+~...~+a^kx^{n-k})~mod~m . \label{MRG} \end{equation} -Combination of two MRGs (referred as 2MRGs) is also used in these experimentations. +Combination of two MRGs (referred as 2MRGs) is also used in these experiments. Generators based on linear recurrences with carry will be regarded too. This family of generators includes the add-with-carry (AWC) generator, based on the recurrence: @@ -993,12 +1080,12 @@ c^n = (a^1x^{n-1} \oplus ~...~ \oplus a^rx^{n-r} \oplus c^{n-1}) ~ / ~ 2^w. \end Then the generalized feedback shift register (GFSR) generator has been implemented, that is: \begin{equation} -x^n = x^{n-r} \oplus x^{n-k} +x^n = x^{n-r} \oplus x^{n-k} . \label{GFSR} \end{equation} -Finally, the nonlinear inversive generator~\cite{LEcuyerS07} has been regarded too, which is: +Finally, the nonlinear inversive (INV) generator~\cite{LEcuyerS07} has been studied, which is: \begin{equation} \label{INV} @@ -1112,8 +1199,9 @@ The obtained results are reproduced in Table The scores written in boldface indicate that all the tests have been passed successfully, whereas an asterisk ``*'' means that the considered passing rate has been improved. The improvements are obvious for both the ``Old CI'' and ``New CI'' generators. -Concerning the ``Xor CI PRNG'', the speed improvement makes that statistical -results are not as good as for the two other versions of these CIPRNGs. +Concerning the ``Xor CI PRNG'', the score is less spectacular: a large speed improvement makes that statistics + are not as good as for the two other versions of these CIPRNGs. +However 8 tests have been improved (with no deflation for the other results). \begin{table*} @@ -1140,8 +1228,9 @@ DieHARD & 16/18 & 16/18 & 17/18* & \textbf{18/18} * & \textbf{18/18} & \textbf{ We have then investigate in~\cite{bfg12a:ip} if it is possible to improve the statistical behavior of the Xor CI version by combining more than one -$\oplus$ operation. Results are summarized in~\ref{threshold}, showing -that rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained +$\oplus$ operation. Results are summarized in Table~\ref{threshold}, illustrating +the progressive increasing effects of chaotic iterations, when giving time to chaos to get settled in. +Thus rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be obtained using chaotic iterations on defective generators. \begin{table*} @@ -1156,15 +1245,19 @@ Threshold value $m$& 19 & 7 & 2& 1 & 11& 9& 3& 4\\ \hline\hline \end{tabular} \end{table*} -Finally, the TestU01 battery as been launched on three well-known generators +Finally, the TestU01 battery has been launched on three well-known generators (a logistic map, a simple XORshift, and the cryptographically secure ISAAC, see Table~\ref{TestU011}). These results can be compared with Table~\ref{TestU01 for Old CI}, which gives the scores obtained by the Old CI PRNG that has received these generators. +The obvious improvement speaks for itself, and together with the other +results recalled in this section, it reinforces the opinion that a strong +correlation between topological properties and statistical behavior exists. -Next subsection gives a concrete implementation of this Xor CI PRNG, which will -new be simply called CIPRNG, or ``the proposed PRNG'', if this statement does not +Next subsection will now give a concrete original implementation of the Xor CI PRNG, the +fastest generator in the chaotic iteration based family. In the remainder, +this generator will be simply referred as CIPRNG, or ``the proposed PRNG'', if this statement does not raise ambiguity. \end{color} @@ -1213,7 +1306,7 @@ raise ambiguity. -\lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label=algo:seqCIPRNG} +\lstset{language=C,caption={C code of the sequential PRNG based on chaotic iterations},label={algo:seqCIPRNG}} \begin{small} \begin{lstlisting} @@ -1723,6 +1816,7 @@ secure. \begin{color}{red} \subsection{Practical Security Evaluation} +\label{sec:Practicak evaluation} Suppose now that the PRNG will work during $M=100$ time units, and that during this period,