X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/a0cdbfd7933130eaba676883427b46743a6cf7ea..1ac8792cbffd85b53eb50d99f0f70e7d2bf2eb3f:/prng_gpu.tex diff --git a/prng_gpu.tex b/prng_gpu.tex index 39cee40..f985e03 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -1279,7 +1279,7 @@ this generator will be simply referred as CIPRNG, or ``the proposed PRNG'', if t raise ambiguity. \end{color} -\subsection{Efficient Implementation of a PRNG based on Chaotic Iterations} +\subsection{First Efficient Implementation of a PRNG based on Chaotic Iterations} \label{sec:efficient PRNG} % %Based on the proof presented in the previous section, it is now possible to @@ -1358,7 +1358,13 @@ works with 32-bits, we use the command \texttt{(unsigned int)}, that selects the Thus producing a pseudorandom number needs 6 xor operations with 6 32-bits numbers that are provided by 3 64-bits PRNGs. This version successfully passes the -stringent BigCrush battery of tests~\cite{LEcuyerS07}. +stringent BigCrush battery of tests~\cite{LEcuyerS07}. +\begin{color}{red}At this point, we thus +have defined an efficient and statistically unbiased generator. Its speed is +directly related to the use of linear operations, but for the same reason, +this fast generator cannot be proven as secure. +\end{color} + \section{Efficient PRNGs based on Chaotic Iterations on GPU} \label{sec:efficient PRNG gpu}