X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/e413aa9f2f3893a394428e26368d44eaa851a986..d5edcd3d7b79a64307eacf4352400b1ee48c7bbb:/prng_gpu.tex diff --git a/prng_gpu.tex b/prng_gpu.tex index f7499d9..ce0bcc5 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -40,6 +40,9 @@ \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}} + +\newcommand{\PCH}[1]{\begin{color}{blue}#1\end{color}} + \title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU} \begin{document} @@ -1600,7 +1603,16 @@ as it is shown in the next sections. \section{Security Analysis} \label{sec:security analysis} - +\PCH{This section is dedicated to the analysis of the security of the + proposed PRNGs from a theoretical point of view. The standard definition + of {\it indistinguishability} used is the classical one as defined for + instance in~\cite[chapter~3]{Goldreich}. It is important to emphasize that + this property shows that predicting the future results of the PRNG's + cannot be done in a reasonable time compared to the generation time. This + is a relative notion between breaking time and the sizes of the + keys/seeds. Of course, if small keys or seeds are chosen, the system can + be broken in practice. But it also means that if the keys/seeds are large + enough, the system is secured.} In this section the concatenation of two strings $u$ and $v$ is classically denoted by $uv$.