X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/e4f33be63a2bad38b19204da8d8be5c7e2113e13..ac6bfa65b430ec096510982e7ac3eecef4aa75cd:/prng_gpu.tex?ds=inline diff --git a/prng_gpu.tex b/prng_gpu.tex index 0ab28a1..b3a844a 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -1,5 +1,6 @@ %\documentclass{article} -\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran} +%\documentclass[10pt,journal,letterpaper,compsoc]{IEEEtran} +\documentclass[preprint,12pt]{elsarticle} \usepackage[utf8]{inputenc} \usepackage[T1]{fontenc} \usepackage{fullpage} @@ -48,7 +49,7 @@ Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}} -\IEEEcompsoctitleabstractindextext{ +%\IEEEcompsoctitleabstractindextext{ \begin{abstract} In this paper we present a new pseudorandom number generator (PRNG) on graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It @@ -63,12 +64,12 @@ A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is fin \end{abstract} -} +%} \maketitle -\IEEEdisplaynotcompsoctitleabstractindextext -\IEEEpeerreviewmaketitle +%\IEEEdisplaynotcompsoctitleabstractindextext +%\IEEEpeerreviewmaketitle \section{Introduction} @@ -1128,7 +1129,7 @@ a^1 & \text{if}~ z^{n-1} = 0 .\end{array} \right. \end{array}\end{equation} \begin{table} -\renewcommand{\arraystretch}{1.3} +%\renewcommand{\arraystretch}{1} \caption{TestU01 Statistical Test Failures} \label{TestU011} \centering @@ -1150,7 +1151,7 @@ Failures & &261 &146 &0 \\ \begin{table} -\renewcommand{\arraystretch}{1.3} +%\renewcommand{\arraystretch}{1} \caption{TestU01 Statistical Test Failures for Old CI algorithms ($\mathsf{N}=4$)} \label{TestU01 for Old CI} \centering @@ -1189,7 +1190,7 @@ TestU01~\cite{LEcuyerS07}, which encompasses the two other batteries. \label{Results and discussion} \begin{table*} -\renewcommand{\arraystretch}{1.3} +%\renewcommand{\arraystretch}{1} \caption{NIST and DieHARD tests suite passing rates for PRNGs without CI} \label{NIST and DieHARD tests suite passing rate the for PRNGs without CI} \centering @@ -1235,7 +1236,7 @@ However 8 tests have been improved (with no deflation for the other results). \begin{table*} -\renewcommand{\arraystretch}{1.3} +%\renewcommand{\arraystretch}{1.3} \caption{NIST and DieHARD tests suite passing rates for PRNGs with CI} \label{NIST and DieHARD tests suite passing rate the for single CIPRNGs} \centering @@ -1264,7 +1265,7 @@ Thus rapid and perfect PRNGs, regarding the NIST and DieHARD batteries, can be o using chaotic iterations on defective generators. \begin{table*} -\renewcommand{\arraystretch}{1.3} +%\renewcommand{\arraystretch}{1.3} \caption{Number of $\oplus$ operations to pass the whole NIST and DieHARD batteries} \label{threshold} \centering @@ -1571,7 +1572,7 @@ As a comparison, Listing~\ref{algo:seqCIPRNG} leads to the generation of \begin{figure}[htbp] \begin{center} - \includegraphics[width=\columnwidth]{curve_time_xorlike_gpu.pdf} + \includegraphics[scale=0.7]{curve_time_xorlike_gpu.pdf} \end{center} \caption{Quantity of pseudorandom numbers generated per second with the xorlike-based PRNG} \label{fig:time_xorlike_gpu} @@ -1590,7 +1591,7 @@ reduction. \begin{figure}[htbp] \begin{center} - \includegraphics[width=\columnwidth]{curve_time_bbs_gpu.pdf} + \includegraphics[scale=0.7]{curve_time_bbs_gpu.pdf} \end{center} \caption{Quantity of pseudorandom numbers generated per second using the BBS-based PRNG} \label{fig:time_bbs_gpu} @@ -2045,14 +2046,14 @@ her new public key will be $(S^0, N)$. To encrypt his message, Bob will compute %%RAPH : ici, j'ai mis un simple $ -%\begin{equation} -$c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right.$ -$ \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right)$ -%%\end{equation} -instead of $\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$. +\begin{equation*} +c = \left(m_0 \oplus (b_0 \oplus S^0), m_1 \oplus (b_0 \oplus b_1 \oplus S^0), \hdots, \right. + \left. m_{L-1} \oplus (b_0 \oplus b_1 \hdots \oplus b_{L-1} \oplus S^0) \right) +\end{equation*} +instead of $$\left(m_0 \oplus b_0, m_1 \oplus b_1, \hdots, m_{L-1} \oplus b_{L-1} \right)$$. The same decryption stage as in Blum-Goldwasser leads to the sequence -$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$. +$$\left(m_0 \oplus S^0, m_1 \oplus S^0, \hdots, m_{L-1} \oplus S^0 \right)$$. Thus, with a simple use of $S^0$, Alice can obtain the plaintext. By doing so, the proposed generator is used in place of BBS, leading to the inheritance of all the properties presented in this paper.