X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/blobdiff_plain/e55d237aba022a66cc2d7650d295b29169878f45..860ecbe3a673a4ac258e24e6c0284a56e3427b6e:/prng_gpu.tex?ds=inline diff --git a/prng_gpu.tex b/prng_gpu.tex index 20e2566..34ec700 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -161,7 +161,7 @@ We show in Section~\ref{sec:security analysis} that, if the inputted generator is cryptographically secure, then it is the case too for the generator provided by the post-treatment. Such a proof leads to the proposition of a cryptographically secure and -chaotic generator on GPU based on the famous Blum Blum Shum +chaotic generator on GPU based on the famous Blum Blum Shub in Section~\ref{sec:CSGPU}, and to an improvement of the Blum-Goldwasser protocol in Sect.~\ref{Blum-Goldwasser}. This research work ends by a conclusion section, in which the contribution is @@ -224,7 +224,10 @@ We can finally remark that, to the best of our knowledge, no GPU implementation \label{section:BASIC RECALLS} This section is devoted to basic definitions and terminologies in the fields of -topological chaos and chaotic iterations. +topological chaos and chaotic iterations. We assume the reader is familiar +with basic notions on topology (see for instance~\cite{Devaney}). + + \subsection{Devaney's Chaotic Dynamical Systems} In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ @@ -237,7 +240,7 @@ Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f : \mathcal{X} \rightarrow \mathcal{X}$. \begin{definition} -$f$ is said to be \emph{topologically transitive} if, for any pair of open sets +The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq \varnothing$. \end{definition} @@ -256,7 +259,7 @@ necessarily the same period). \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}] -$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and +The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. \end{definition} @@ -264,12 +267,12 @@ The chaos property is strongly linked to the notion of ``sensitivity'', defined on a metric space $(\mathcal{X},d)$ by: \begin{definition} -\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions} +\label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions} if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that $d\left(f^{n}(x), f^{n}(y)\right) >\delta $. -$\delta$ is called the \emph{constant of sensitivity} of $f$. +The constant $\delta$ is called the \emph{constant of sensitivity} of $f$. \end{definition} Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is @@ -328,17 +331,15 @@ Let us now recall how to define a suitable metric space where chaotic iterations are continuous. For further explanations, see, e.g., \cite{guyeux10}. Let $\delta $ be the \emph{discrete Boolean metric}, $\delta -(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function: -%%RAPH : ici j'ai coupé la dernière ligne en 2, c'est moche mais bon -\begin{equation} +(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function +$F_{f}: \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} +\longrightarrow \mathds{B}^{\mathsf{N}}$ +\begin{equation*} \begin{array}{lrll} -F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} & -\longrightarrow & \mathds{B}^{\mathsf{N}} \\ -& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ \right.\\ -& & & \left. f(E)_{k}.\overline{\delta -(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},% +& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta +(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}% \end{array}% -\end{equation}% +\end{equation*}% \noindent where + and . are the Boolean addition and product operations. Consider the phase space: \begin{equation} @@ -591,11 +592,11 @@ faster, does not deflate their topological chaos properties. \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations} \label{deuxième def} Let us consider the discrete dynamical systems in chaotic iterations having -the general form: +the general form: $\forall n\in \mathds{N}^{\ast }$, $ \forall i\in +\llbracket1;\mathsf{N}\rrbracket $, \begin{equation} -\forall n\in \mathds{N}^{\ast }, \forall i\in -\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{ + x_i^n=\left\{ \begin{array}{ll} x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\ \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n. @@ -620,15 +621,13 @@ Let us introduce the following function: where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$. Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function: -%%RAPH : j'ai coupé la dernière ligne en 2, c'est moche -\begin{equation} -\begin{array}{lrll} -F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} & -\longrightarrow & \mathds{B}^{\mathsf{N}} \\ -& (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+\right.\\ -& & &\left.f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},% +$F_{f}: \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} +\longrightarrow \mathds{B}^{\mathsf{N}}$ +\begin{equation*} +\begin{array}{rll} + (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}% \end{array}% -\end{equation}% +\end{equation*}% where + and . are the Boolean addition and product operations, and $\overline{x}$ is the negation of the Boolean $x$. Consider the phase space: @@ -758,16 +757,16 @@ thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal. \noindent As a consequence, the $k+1$ first entries of the strategies of $% G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $% -10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline +10^{-(k+1)}\leqslant \varepsilon $. + In conclusion, %%RAPH : ici j'ai rajouté une ligne -\begin{flushleft}$$ -\forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}% -,\forall n\geqslant N_{0},$$ -$$ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right) +$ +\forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N} +,$ $\forall n\geqslant N_{0},$ +$ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right) \leqslant \varepsilon . -$$ -\end{flushleft} +$ $G_{f}$ is consequently continuous. \end{proof} @@ -807,7 +806,7 @@ where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties claimed in the lemma. \end{proof} -We can now prove Theorem~\ref{t:chaos des general}... +We can now prove the Theorem~\ref{t:chaos des general}. \begin{proof}[Theorem~\ref{t:chaos des general}] Firstly, strong transitivity implies transitivity. @@ -1232,8 +1231,10 @@ $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows, by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$ is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}), one has +$\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and, +therefore, \begin{equation}\label{PCH-2} -\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1]. +\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1]. \end{equation} Now, using (\ref{PCH-1}) again, one has for every $x$, @@ -1269,7 +1270,7 @@ It is possible to build a cryptographically secure PRNG based on the previous algorithm (Algorithm~\ref{algo:gpu_kernel2}). Due to Proposition~\ref{cryptopreuve}, it simply consists in replacing the {\it xor-like} PRNG by a cryptographically secure one. -We have chosen the Blum Blum Shum generator~\cite{BBS} (usually denoted by BBS) having the form: +We have chosen the Blum Blum Shub generator~\cite{BBS} (usually denoted by BBS) having the form: $$x_{n+1}=x_n^2~ mod~ M$$ where $M$ is the product of two prime numbers (these prime numbers need to be congruent to 3 modulus 4). BBS is known to be very slow and only usable for cryptographic applications. @@ -1388,6 +1389,40 @@ secure. +\begin{color}{red} +\subsection{Practical Security Evaluation} + +Suppose now that the PRNG will work during +$M=100$ time units, and that during this period, +an attacker can realize $10^{12}$ clock cycles. +We thus wonder whether, during the PRNG's +lifetime, the attacker can distinguish this +sequence from truly random one, with a probability +greater than $\varepsilon = 0.2$. +We consider that $N$ has 900 bits. + +The random process is the BBS generator, which +is cryptographically secure. More precisely, it +is $(T,\varepsilon)-$secure: no +$(T,\varepsilon)-$distinguishing attack can be +successfully realized on this PRNG, if~\cite{Fischlin} +$$ +T \leqslant \dfrac{L(N)}{6 N (log_2(N))\varepsilon^{-2}M^2}-2^7 N \varepsilon^{-2} M^2 log_2 (8 N \varepsilon^{-1}M) +$$ +where $M$ is the length of the output ($M=100$ in +our example), and $L(N)$ is equal to +$$ +2.8\times 10^{-3} exp \left(1.9229 \times (N ~ln(2)^\frac{1}{3}) \times ln(N~ln 2)^\frac{2}{3}\right) +$$ +is the number of clock cycles to factor a $N-$bit +integer. + +A direct numerical application shows that this attacker +cannot achieve its $(10^{12},0.2)$ distinguishing +attack in that context. + +\end{color} + \subsection{Toward a Cryptographically Secure and Chaotic Asymmetric Cryptosystem} \label{Blum-Goldwasser} We finish this research work by giving some thoughts about the use of @@ -1470,10 +1505,10 @@ namely the BigCrush. Furthermore, we have shown that when the inputted generator is cryptographically secure, then it is the case too for the PRNG we propose, thus leading to the possibility to develop fast and secure PRNGs using the GPU architecture. -Thoughts about an improvement of the Blum-Goldwasser cryptosystem, using the -proposed method, has been finally proposed. +\begin{color}{red} An improvement of the Blum-Goldwasser cryptosystem, making it +behaves chaotically, has finally been proposed. \end{color} -In future work we plan to extend these researches, building a parallel PRNG for clusters or +In future work we plan to extend this research, building a parallel PRNG for clusters or grid computing. Topological properties of the various proposed generators will be investigated, and the use of other categories of PRNGs as input will be studied too. The improvement of Blum-Goldwasser will be deepened. Finally, we