]> AND Private Git Repository - prng_gpu.git/commitdiff
Logo AND Algorithmique Numérique Distribuée

Private GIT Repository
Remoulinage de choucroute
authorguyeux <guyeux@gmail.com>
Tue, 29 Nov 2011 14:40:10 +0000 (15:40 +0100)
committerguyeux <guyeux@gmail.com>
Tue, 29 Nov 2011 14:40:10 +0000 (15:40 +0100)
prng_gpu.tex

index 6e063fd1f07d19932c823816b8961c14b2868580..9de2d15de29484c0c8eb1457cef58847bc4c70f9 100644 (file)
 
 \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}}
 
-\title{Efficient Generation of Pseudo-Random Numbers based on Chaotic Iterations
-on GPU}
+\title{Efficient and Cryptographically Secure Generation of Chaotic Pseudorandom Numbers on GPU}
 \begin{document}
 
-\author{Jacques M. Bahi, Rapha\"{e}l Couturier, and Christophe
-Guyeux, Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
-
+\author{Jacques M. Bahi, Rapha\"{e}l Couturier,  Christophe
+Guyeux, and Pierre-Cyrille Heam\thanks{Authors in alphabetic order}}
+   
 \maketitle
 
 \begin{abstract}
-In this paper we present a new pseudo-random numbers generator (PRNG) on
-graphics processing units  (GPU). This PRNG is based  on chaotic iterations.  it
-is proven  to be chaotic  in the Devanay's  formulation. We propose  an efficient
-implementation  for  GPU which  succeeds  to  the  {\it BigCrush},  the  hardest
-batteries of test of TestU01.  Experimentations show that this PRNG can generate
+In this paper we present a new pseudorandom number generator (PRNG) on
+graphics processing units  (GPU). This PRNG is based  on the so-called chaotic iterations.  It
+is firstly proven  to be chaotic according to the Devaney's  formulation. We thus propose  an efficient
+implementation  for  GPU that successfully passes the   {\it BigCrush} tests, deemed to be the  hardest
+battery of tests in TestU01.  Experiments show that this PRNG can generate
 about 20 billions of random numbers  per second on Tesla C1060 and NVidia GTX280
 cards.
+It is finally established that, under reasonable assumptions, the proposed PRNG can be cryptographically 
+secure.
 
 
 \end{abstract}
 
 \section{Introduction}
 
-Random  numbers are  used in  many scientific  applications and  simulations. On
-finite  state machines,  as computers,  it is  not possible  to  generate random
-numbers but only pseudo-random numbers. In practice, a good pseudo-random numbers
-generator (PRNG) needs  to verify some features to be used  by scientists. It is
-important  to  be  able  to  generate  pseudo-random  numbers  efficiently,  the
-generation  needs to  be reproducible  and a  PRNG needs  to satisfy  many usual
-statistical properties. Finally, from our point a view, it is essential to prove
-that  a PRNG  is  chaotic.  Concerning  the  statistical tests,  TestU01 is  the
-best-known public-domain statistical testing package.   So we use it for all our
-PRNGs, especially the {\it BigCrush}  which provides the largest serie of tests.
-Concerning  the  chaotic properties,  Devaney~\cite{Devaney}  proposed a  common
-mathematical formulation of chaotic dynamical systems.
-
-In a  previous work~\cite{bgw09:ip}  we have proposed  a new familly  of chaotic
-PRNG  based on  chaotic iterations. We  have proven  that these  PRNGs are
-chaotic in the Devaney's sense.  In this paper we propose a faster version which
-is also proven to be chaotic.
-
-Although graphics  processing units (GPU)  was initially designed  to accelerate
+Randomness is of importance in many fields as scientific simulations or cryptography. 
+``Random numbers'' can mainly be generated either by a deterministic and reproducible algorithm
+called a pseudorandom number generator (PRNG), or by a physical non-deterministic 
+process having all the characteristics of a random noise, called a truly random number
+generator (TRNG). 
+In this paper, we focus on reproducible generators, useful for instance in
+Monte-Carlo based simulators or in several cryptographic schemes.
+These domains need PRNGs that are statistically irreproachable. 
+On some fields as in numerical simulations, speed is a strong requirement
+that is usually attained by using parallel architectures. In that case,
+a recurrent problem is that a deflate of the statistical qualities is often
+reported, when the parallelization of a good PRNG is realized.
+This is why ad-hoc PRNGs for each possible architecture must be found to
+achieve both speed and randomness.
+On the other side, speed is not the main requirement in cryptography: the great
+need is to define \emph{secure} generators being able to withstand malicious
+attacks. Roughly speaking, an attacker should not be able in practice to make 
+the distinction between numbers obtained with the secure generator and a true random
+sequence. 
+Finally, a small part of the community working in this domain focus on a
+third requirement, that is to define chaotic generators.
+The main idea is to take benefits from a chaotic dynamical system to obtain a
+generator that is unpredictable, disordered, sensible to its seed, or in other words chaotic.
+Their desire is to map a given chaotic dynamics into a sequence that seems random 
+and unassailable due to chaos.
+However, the chaotic maps used as a pattern are defined in the real line 
+whereas computers deal with finite precision numbers.
+This distortion leads to a deflation of both chaotic properties and speed.
+Furthermore, authors of such chaotic generators often claim their PRNG
+as secure due to their chaos properties, but there is no obvious relation
+between chaos and security as it is understood in cryptography.
+This is why the use of chaos for PRNG still remains marginal and disputable.
+
+The authors' opinion is that topological properties of disorder, as they are
+properly defined in the mathematical theory of chaos, can reinforce the quality
+of a PRNG. But they are not substitutable for security or statistical perfection.
+Indeed, to the authors' point of view, such properties can be useful in the two following situations. On the
+one hand, a post-treatment based on a chaotic dynamical system can be applied
+to a PRNG statistically deflective, in order to improve its statistical 
+properties. Such an improvement can be found, for instance, in~\cite{bgw09:ip,bcgr11:ip}.
+On the other hand, chaos can be added to a fast, statistically perfect PRNG and/or a
+cryptographically secure one, in case where chaos can be of interest,
+\emph{only if these last properties are not lost during
+the proposed post-treatment}. Such an assumption is behind this research work.
+It leads to the attempts to define a 
+family of PRNGs that are chaotic while being fast and statistically perfect,
+or cryptographically secure.
+Let us finish this paragraph by noticing that, in this paper, 
+statistical perfection refers to the ability to pass the whole 
+{\it BigCrush} battery of tests, which is widely considered as the most
+stringent statistical evaluation of a sequence claimed as random.
+This battery can be found into the well-known TestU01 package.
+Chaos, for its part, refers to the well-established definition of a
+chaotic dynamical system proposed by Devaney~\cite{Devaney}.
+
+
+In a previous work~\cite{bgw09:ip,guyeux10} we have proposed a post-treatment on PRNGs making them behave
+as a chaotic dynamical system. Such a post-treatment leads to a new category of
+PRNGs. We have shown that proofs of Devaney's chaos can be established for this
+family, and that the sequence obtained after this post-treatment can pass the
+NIST, DieHARD, and TestU01 batteries of tests, even if the inputted generators
+cannot.
+The proposition of this paper is to improve widely the speed of the formerly
+proposed generator, without any lack of chaos or statistical properties.
+In particular, a version of this PRNG on graphics processing units (GPU)
+is proposed.
+Although GPU was initially designed  to accelerate
 the manipulation of  images, they are nowadays commonly  used in many scientific
-applications. Therefore,  it is important  to be able to  generate pseudo-random
-numbers inside a GPU when a scientific application runs in a GPU. That is why we
-also provide  an efficient  PRNG for  GPU respecting based  on IC.  Such devices
-allows us to generated almost 20 billions of random numbers per second.
-
-In order  to establish  that our  PRNGs are chaotic  according to  the Devaney's
-formulation, we  extend what we  have proposed in~\cite{guyeux10}.
-
-The rest of this paper  is organised as follows. In Section~\ref{section:related
-  works} we  review some GPU implementions  of PRNG.  Section~\ref{section:BASIC
-  RECALLS} gives some basic recalls  on Devanay's formation of chaos and chaotic
-iterations. In  Section~\ref{sec:pseudo-random} the proof of chaos  of our PRNGs
-is   studied.    Section~\ref{sec:efficient    prng}   presents   an   efficient
-implementation of  our chaotic PRNG  on a CPU.   Section~\ref{sec:efficient prng
-  gpu}   describes   the  GPU   implementation   of   our   chaotic  PRNG.    In
-Section~\ref{sec:experiments}     some    experimentations     are    presented.
- Finally, we give a conclusion and some perspectives.
+applications. Therefore,  it is important  to be able to  generate pseudorandom
+numbers inside a GPU when a scientific application runs in it. This remark
+motivates our proposal of a chaotic and statistically perfect PRNG for GPU.  
+Such device
+allows us to generated almost 20 billions of pseudorandom numbers per second.
+Last, but not least, we show that the proposed post-treatment preserves the
+cryptographical security of the inputted PRNG, when this last has such a 
+property.
+
+The remainder of this paper  is organized as follows. In Section~\ref{section:related
+  works} we  review some GPU implementations  of PRNGs.  Section~\ref{section:BASIC
+  RECALLS} gives some basic recalls  on the well-known Devaney's formulation of chaos, 
+  and on an iteration process called ``chaotic
+iterations'' on which the post-treatment is based. 
+Proofs of chaos are given in  Section~\ref{sec:pseudorandom}.
+Section~\ref{sec:efficient    prng}   presents   an   efficient
+implementation of  this chaotic PRNG  on a CPU, whereas   Section~\ref{sec:efficient prng
+  gpu}   describes   the  GPU   implementation. 
+Such generators are experimented in 
+Section~\ref{sec:experiments}.
+We show in Section~\ref{sec:security analysis} that, if the inputted
+generator is cryptographically secure, then it is the case too for the
+generator provided by the post-treatment.
+Such a proof leads to the proposition of a cryptographically secure and
+chaotic generator on GPU based on the famous Blum Blum Shum
+in Section~\ref{sec:CSGPU}.
+This research work ends by a conclusion section, in which the contribution is
+summarized and intended future work is presented.
 
 
 
@@ -355,7 +415,7 @@ if and only if $\Gamma(f)$ is strongly connected.
 \end{theorem}
 
 This result of chaos has lead us to study the possibility to build a
-pseudo-random number generator (PRNG) based on the chaotic iterations. 
+pseudorandom number generator (PRNG) based on the chaotic iterations. 
 As $G_f$, defined on the domain   $\llbracket 1 ;  \mathsf{N} \rrbracket^{\mathds{N}} 
 \times \mathds{B}^\mathsf{N}$, is build from Boolean networks $f : \mathds{B}^\mathsf{N}
 \rightarrow \mathds{B}^\mathsf{N}$, we can preserve the theoretical properties on $G_f$
@@ -363,9 +423,9 @@ during implementations (due to the discrete nature of $f$). It is as if
 $\mathds{B}^\mathsf{N}$ represents the memory of the computer whereas $\llbracket 1 ;  \mathsf{N}
 \rrbracket^{\mathds{N}}$ is its input stream (the seeds, for instance).
 
-\section{Application to Pseudo-Randomness}
-\label{sec:pseudo-random}
-\subsection{A First Pseudo-Random Number Generator}
+\section{Application to pseudorandomness}
+\label{sec:pseudorandom}
+\subsection{A First pseudorandom Number Generator}
 
 We have proposed in~\cite{bgw09:ip} a new family of generators that receives 
 two PRNGs as inputs. These two generators are mixed with chaotic iterations, 
@@ -490,7 +550,7 @@ the vectorial negation, leads to a speed improvement. However, proofs
 of chaos obtained in~\cite{bg10:ij} have been established
 only for chaotic iterations of the form presented in Definition 
 \ref{Def:chaotic iterations}. The question is now to determine whether the
-use of more general chaotic iterations to generate pseudo-random numbers 
+use of more general chaotic iterations to generate pseudorandom numbers 
 faster, does not deflate their topological chaos properties.
 
 \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations}
@@ -943,27 +1003,6 @@ Thus Algorithm~\ref{algo:gpu_kernel2} is a concrete realization of the general
 chaotic iterations presented previously, and for this reason, it satisfies the 
 Devaney's formulation of a chaotic behavior.
 
-\section{A cryptographically secure prng for GPU}
-
-It is  possible to build a  cryptographically secure prng based  on the previous
-algorithm (algorithm~\ref{algo:gpu_kernel2}).   It simply consists  in replacing
-the  {\it  xor-like} algorithm  by  another  cryptographically  secure prng.  In
-practice, we suggest  to use the BBS algorithm~\cite{BBS}  which takes the form:
-$$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. Those
-prime numbers  need to be congruent  to 3 modulus  4. In practice, this  PRNG is
-known to  be slow and  not efficient for  the generation of random  numbers. For
-current  GPU   cards,  the  modulus   operation  is  the  most   time  consuming
-operation. So in  order to obtain quite reasonable  performances, it is required
-to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
-less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
-pratice we can  choose prime numbers around 256 that are  congruent to 3 modulus
-4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
-chosen  (the   maximum  number  of   undistinguishing  is  less  or   equals  to
-$log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
-the BBS algorithm, with different combinations of $M$ is required.
-
-Currently this PRNG does not succeed to pass all the tests of TestU01.
-
 \section{Experiments}
 \label{sec:experiments}
 
@@ -1015,7 +1054,7 @@ obtain approximately 1.8GSample/s and on the GTX 280 about 1.6GSample/s.
 \end{figure}
 
 Both  these  experimentations allows  us  to conclude  that  it  is possible  to
-generate a  huge number of pseudo-random  numbers with the  xor-like version and
+generate a  huge number of pseudorandom  numbers with the  xor-like version and
 about tens  times less with the BBS  based version. The former  version has only
 chaotic properties whereas the latter also has cryptographically properties.
 
@@ -1556,13 +1595,13 @@ chaotic properties whereas the latter also has cryptographically properties.
 
 
 \section{Security Analysis}
-
+\label{sec:security analysis}
 
 
 
 In this section the concatenation of two strings $u$ and $v$ is classically
 denoted by $uv$.
-In a cryptographic context, a pseudo-random generator is a deterministic
+In a cryptographic context, a pseudorandom generator is a deterministic
 algorithm $G$ transforming strings  into strings and such that, for any
 seed $w$ of length $N$, $G(w)$ (the output of $G$ on the input $w$) has size
 $\ell_G(N)$ with $\ell_G(N)>N$.
@@ -1586,7 +1625,7 @@ quite easily possible to change the function $\ell$ into any polynomial
 function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}.
 
 The generation schema developed in (\ref{equation Oplus}) is based on a
-pseudo-random generator. Let $H$ be a cryptographic PRNG. We may assume,
+pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume,
 without loss of generality, that for any string $S_0$ of size $N$, the size
 of $H(S_0)$ is $kN$, with $k>2$. It means that $\ell_H(N)=kN$. 
 Let $S_1,\ldots,S_k$ be the 
@@ -1667,6 +1706,27 @@ proving that $H$ is not secure, a contradiction.
 
 
 
+\section{A cryptographically secure prng for GPU}
+\label{sec:CSGPU}
+It is  possible to build a  cryptographically secure prng based  on the previous
+algorithm (algorithm~\ref{algo:gpu_kernel2}).   It simply consists  in replacing
+the  {\it  xor-like} algorithm  by  another  cryptographically  secure prng.  In
+practice, we suggest  to use the BBS algorithm~\cite{BBS}  which takes the form:
+$$x_{n+1}=x_n^2~ mod~ M$$  where $M$ is the product of  two prime numbers. Those
+prime numbers  need to be congruent  to 3 modulus  4. In practice, this  PRNG is
+known to  be slow and  not efficient for  the generation of random  numbers. For
+current  GPU   cards,  the  modulus   operation  is  the  most   time  consuming
+operation. So in  order to obtain quite reasonable  performances, it is required
+to use only modulus on 32  bits integer numbers. Consequently $x_n^2$ need to be
+less than  $2^{32}$ and the  number $M$  need to be  less than $2^{16}$.   So in
+pratice we can  choose prime numbers around 256 that are  congruent to 3 modulus
+4.  With  32 bits numbers,  only the  4 least significant  bits of $x_n$  can be
+chosen  (the   maximum  number  of   undistinguishing  is  less  or   equals  to
+$log_2(log_2(x_n))$). So  to generate a 32 bits  number, we need to  use 8 times
+the BBS algorithm, with different combinations of $M$ is required.
+
+Currently this PRNG does not succeed to pass all the tests of TestU01.
+
 
 \section{Conclusion}
 
@@ -1676,7 +1736,7 @@ iterations. We have proven that these PRNGs are chaotic in the sense of Devenay.
 We also propose a PRNG cryptographically secure and its implementation on GPU.
 
 An  efficient implementation  on  GPU based  on  a xor-like  PRNG  allows us  to
-generate   a  huge   number   of  pseudo-random   numbers   per  second   (about
+generate   a  huge   number   of  pseudorandom   numbers   per  second   (about
 20Gsample/s). This PRNG succeeds to pass the hardest batteries of TestU01.
 
 In future  work we plan to  extend this work  for parallel PRNG for  clusters or