From: guyeux Date: Sun, 30 Oct 2011 10:04:56 +0000 (+0100) Subject: Fin de la partie general chaootic iterations X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/commitdiff_plain/2e8e9b41154df43b7a17bb19733abea069a7f20e?hp=-c Fin de la partie general chaootic iterations --- 2e8e9b41154df43b7a17bb19733abea069a7f20e diff --git a/prng_gpu.tex b/prng_gpu.tex index 96098bb..5431409 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -584,6 +584,49 @@ $G_{f}$ is consequently continuous. \end{proof} +It is now possible to study the topological behavior of the general chaotic +iterations. We will prove that, + +\begin{theorem} +\label{t:chaos des general} + The general chaotic iterations defined on Equation~\ref{general CIs} satisfy +the Devaney's property of chaos. +\end{theorem} + +Let us firstly prove the following lemma. + +\begin{lemma}[Strong transitivity] +\label{strongTrans} + For all couples $X,Y \in \mathcal{X}$ and any neighborhood $V$ of $X$, we can +find $n \in \mathds{N}^*$ and $X' \in V$ such that $G^n(X')=Y$. +\end{lemma} + +\begin{proof} + Let $X=(S,E)$, $\varepsilon>0$, and $k_0 = \lfloor log_{10}(\varepsilon)+1 \rfloor$. +Any point $X'=(S',E')$ such that $E'=E$ and $\forall k \leqslant k_0, S'^k=S^k$, +are in the open ball $\mathcal{B}\left(X,\varepsilon\right)$. Let us define +$\check{X} = \left(\check{S},\check{E}\right)$, where $\check{X}= G^{k_0}(X)$. +We denote by $s\subset \llbracket 1; \mathsf{N} \rrbracket$ the set of coordinates +that are different between $\check{E}$ and the state of $Y$. Thus each point $X'$ of +the form $(S',E')$ where $E'=E$ and $S'$ starts with +$(S^0, S^1, \hdots, S^{k_0},s,\hdots)$, verifies the following properties: +\begin{itemize} + \item $X'$ is in $\mathcal{B}\left(X,\varepsilon\right)$, + \item the state of $G_f^{k_0+1}(X')$ is the state of $Y$. +\end{itemize} +Finally the point $\left(\left(S^0, S^1, \hdots, S^{k_0},s,s^0, s^1, \hdots\right); E\right)$, +where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties +claimed in the lemma. +\end{proof} + +We can now prove the Theorem~\ref{t:chaos des general}... + +\begin{proof}[Theorem~\ref{t:chaos des general}] + On the one hand, strong transitivity implies transitivity. On the other hand, +the regularity is exactly Lemma~\ref{strongTrans} with $Y=X$. As the sensitivity +to the initial condition is implied by these two properties, we thus have +the theorem. +\end{proof}