From: Pierre-Cyrille Heam Date: Thu, 19 Jan 2012 15:05:25 +0000 (+0100) Subject: Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/prng_gpu X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/commitdiff_plain/3010272fc200ffae4e9223ba48c5f3caf05a4256?hp=e55d237aba022a66cc2d7650d295b29169878f45 Merge branch 'master' of ssh://info.iut-bm.univ-fcomte.fr/prng_gpu Conflicts: prng_gpu.tex --- diff --git a/mabase.bib b/mabase.bib index 94a7d6e..21fb105 100644 --- a/mabase.bib +++ b/mabase.bib @@ -112,6 +112,14 @@ timestamp = {2009.06.29} } +@Book{Goldreich, + author = {Oded Goldreich}, + ALTeditor = {}, + title = {Foundations of Cryptography: Basic Tools}, + publisher = {Cambridge University Press}, + year = {2007}, +} + @INPROCEEDINGS{DBLP:conf/cec/HiggsSHS10, author = {Trent Higgs and Bela Stantic and Tamjidul Hoque and Abdul Sattar}, title = {Genetic algorithm feature-based resampling for protein structure diff --git a/prng_gpu.tex b/prng_gpu.tex index 20e2566..55fc756 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -224,7 +224,10 @@ We can finally remark that, to the best of our knowledge, no GPU implementation \label{section:BASIC RECALLS} This section is devoted to basic definitions and terminologies in the fields of -topological chaos and chaotic iterations. +topological chaos and chaotic iterations. We assume the reader is familiar +with basic notions on topology (see for instance~\cite{Devaney}). + + \subsection{Devaney's Chaotic Dynamical Systems} In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ @@ -237,7 +240,7 @@ Consider a topological space $(\mathcal{X},\tau)$ and a continuous function $f : \mathcal{X} \rightarrow \mathcal{X}$. \begin{definition} -$f$ is said to be \emph{topologically transitive} if, for any pair of open sets +The function $f$ is said to be \emph{topologically transitive} if, for any pair of open sets $U,V \subset \mathcal{X}$, there exists $k>0$ such that $f^k(U) \cap V \neq \varnothing$. \end{definition} @@ -256,7 +259,7 @@ necessarily the same period). \begin{definition}[Devaney's formulation of chaos~\cite{Devaney}] -$f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and +The function $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. \end{definition} @@ -264,12 +267,12 @@ The chaos property is strongly linked to the notion of ``sensitivity'', defined on a metric space $(\mathcal{X},d)$ by: \begin{definition} -\label{sensitivity} $f$ has \emph{sensitive dependence on initial conditions} +\label{sensitivity} The function $f$ has \emph{sensitive dependence on initial conditions} if there exists $\delta >0$ such that, for any $x\in \mathcal{X}$ and any neighborhood $V$ of $x$, there exist $y\in V$ and $n > 0$ such that $d\left(f^{n}(x), f^{n}(y)\right) >\delta $. -$\delta$ is called the \emph{constant of sensitivity} of $f$. +The constant $\delta$ is called the \emph{constant of sensitivity} of $f$. \end{definition} Indeed, Banks \emph{et al.} have proven in~\cite{Banks92} that when $f$ is @@ -807,7 +810,11 @@ where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties claimed in the lemma. \end{proof} +<<<<<<< HEAD +We can now prove the Theorem~\ref{t:chaos des general}. +======= We can now prove Theorem~\ref{t:chaos des general}... +>>>>>>> e55d237aba022a66cc2d7650d295b29169878f45 \begin{proof}[Theorem~\ref{t:chaos des general}] Firstly, strong transitivity implies transitivity. @@ -1232,8 +1239,10 @@ $y\bigoplus_{i=1}^{i=j} w_i^\prime=y\bigoplus_{i=1}^{i=j} w_i$. It follows, by a direct induction, that $w_i=w_i^\prime$. Furthermore, since $\mathbb{B}^{kN}$ is finite, each $\varphi_y$ is bijective. Therefore, and using (\ref{PCH-1}), one has +$\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]$ and, +therefore, \begin{equation}\label{PCH-2} -\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(\varphi_y(U_{kN}))=1]=\mathrm{Pr}[D(U_{kN})=1]. +\mathrm{Pr}[D^\prime(U_{kN})=1]=\mathrm{Pr}[D(U_{kN})=1]. \end{equation} Now, using (\ref{PCH-1}) again, one has for every $x$,