From: guyeux Date: Sat, 21 Jan 2012 11:46:39 +0000 (+0100) Subject: Relecture X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/commitdiff_plain/8cbe6d4faae325510cbbb002936afe1c4e19202b Relecture --- diff --git a/prng_gpu.tex b/prng_gpu.tex index 55fc756..7eb93d1 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -331,17 +331,15 @@ Let us now recall how to define a suitable metric space where chaotic iterations are continuous. For further explanations, see, e.g., \cite{guyeux10}. Let $\delta $ be the \emph{discrete Boolean metric}, $\delta -(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function: -%%RAPH : ici j'ai coupé la dernière ligne en 2, c'est moche mais bon -\begin{equation} +(x,y)=0\Leftrightarrow x=y.$ Given a function $f$, define the function +$F_{f}: \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} +\longrightarrow \mathds{B}^{\mathsf{N}}$ +\begin{equation*} \begin{array}{lrll} -F_{f}: & \llbracket1;\mathsf{N}\rrbracket\times \mathds{B}^{\mathsf{N}} & -\longrightarrow & \mathds{B}^{\mathsf{N}} \\ -& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ \right.\\ -& & & \left. f(E)_{k}.\overline{\delta -(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},% +& (k,E) & \longmapsto & \left( E_{j}.\delta (k,j)+ f(E)_{k}.\overline{\delta +(k,j)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}% \end{array}% -\end{equation}% +\end{equation*}% \noindent where + and . are the Boolean addition and product operations. Consider the phase space: \begin{equation} @@ -594,11 +592,11 @@ faster, does not deflate their topological chaos properties. \subsection{Proofs of Chaos of the General Formulation of the Chaotic Iterations} \label{deuxième def} Let us consider the discrete dynamical systems in chaotic iterations having -the general form: +the general form: $\forall n\in \mathds{N}^{\ast }$, $ \forall i\in +\llbracket1;\mathsf{N}\rrbracket $, \begin{equation} -\forall n\in \mathds{N}^{\ast }, \forall i\in -\llbracket1;\mathsf{N}\rrbracket ,x_i^n=\left\{ + x_i^n=\left\{ \begin{array}{ll} x_i^{n-1} & \text{ if } i \notin \mathcal{S}^n \\ \left(f(x^{n-1})\right)_{S^n} & \text{ if }i \in \mathcal{S}^n. @@ -623,15 +621,13 @@ Let us introduce the following function: where $\mathcal{P}\left(X\right)$ is for the powerset of the set $X$, that is, $Y \in \mathcal{P}\left(X\right) \Longleftrightarrow Y \subset X$. Given a function $f:\mathds{B}^\mathsf{N} \longrightarrow \mathds{B}^\mathsf{N} $, define the function: -%%RAPH : j'ai coupé la dernière ligne en 2, c'est moche -\begin{equation} -\begin{array}{lrll} -F_{f}: & \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} & -\longrightarrow & \mathds{B}^{\mathsf{N}} \\ -& (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+\right.\\ -& & &\left.f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket},% +$F_{f}: \mathcal{P}\left(\llbracket1;\mathsf{N}\rrbracket \right) \times \mathds{B}^{\mathsf{N}} +\longrightarrow \mathds{B}^{\mathsf{N}}$ +\begin{equation*} +\begin{array}{rll} + (P,E) & \longmapsto & \left( E_{j}.\chi (j,P)+f(E)_{j}.\overline{\chi(j,P)}\right) _{j\in \llbracket1;\mathsf{N}\rrbracket}% \end{array}% -\end{equation}% +\end{equation*}% where + and . are the Boolean addition and product operations, and $\overline{x}$ is the negation of the Boolean $x$. Consider the phase space: @@ -761,16 +757,16 @@ thus after $n_{2}$, the $k+2$ first terms of $S^n$ and $S$ are equal. \noindent As a consequence, the $k+1$ first entries of the strategies of $% G_{f}(S^n,E^n)$ and $G_{f}(S,E)$ are the same ($G_{f}$ is a shift of strategies) and due to the definition of $d_{s}$, the floating part of the distance between $(S^n,E^n)$ and $(S,E)$ is strictly less than $% -10^{-(k+1)}\leqslant \varepsilon $.\bigskip \newline +10^{-(k+1)}\leqslant \varepsilon $. + In conclusion, %%RAPH : ici j'ai rajouté une ligne -\begin{flushleft}$$ -\forall \varepsilon >0,\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N}% -,\forall n\geqslant N_{0},$$ -$$ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right) +$ +\forall \varepsilon >0,$ $\exists N_{0}=max(n_{0},n_{1},n_{2})\in \mathds{N} +,$ $\forall n\geqslant N_{0},$ +$ d\left( G_{f}(S^n,E^n);G_{f}(S,E)\right) \leqslant \varepsilon . -$$ -\end{flushleft} +$ $G_{f}$ is consequently continuous. \end{proof} @@ -810,11 +806,7 @@ where $(s^0,s^1, \hdots)$ is the strategy of $Y$, satisfies the properties claimed in the lemma. \end{proof} -<<<<<<< HEAD We can now prove the Theorem~\ref{t:chaos des general}. -======= -We can now prove Theorem~\ref{t:chaos des general}... ->>>>>>> e55d237aba022a66cc2d7650d295b29169878f45 \begin{proof}[Theorem~\ref{t:chaos des general}] Firstly, strong transitivity implies transitivity.