From: couturie Date: Sat, 17 Dec 2011 19:33:32 +0000 (+0100) Subject: modif X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/commitdiff_plain/979f9e26b08888c2d5d492f72a2b4b4fc21b1185 modif --- diff --git a/prng_gpu.tex b/prng_gpu.tex index 6c6c980..48705d0 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -1128,17 +1128,17 @@ In this section the concatenation of two strings $u$ and $v$ is classically denoted by $uv$. In a cryptographic context, a pseudorandom generator is a deterministic algorithm $G$ transforming strings into strings and such that, for any -seed $k$ of length $k$, $G(k)$ (the output of $G$ on the input $k$) has size -$\ell_G(k)$ with $\ell_G(k)>k$. +seed $s$ of length $m$, $G(s)$ (the output of $G$ on the input $s$) has size +$\ell_G(m)$ with $\ell_G(m)>m$. The notion of {\it secure} PRNGs can now be defined as follows. \begin{definition} A cryptographic PRNG $G$ is secure if for any probabilistic polynomial time algorithm $D$, for any positive polynomial $p$, and for all sufficiently -large $k$'s, -$$| \mathrm{Pr}[D(G(U_k))=1]-Pr[D(U_{\ell_G(k)})=1]|< \frac{1}{p(k)},$$ +large $m$'s, +$$| \mathrm{Pr}[D(G(U_m))=1]-Pr[D(U_{\ell_G(m)})=1]|< \frac{1}{p(m)},$$ where $U_r$ is the uniform distribution over $\{0,1\}^r$ and the -probabilities are taken over $U_N$, $U_{\ell_G(N)}$ as well as over the +probabilities are taken over $U_m$, $U_{\ell_G(m)}$ as well as over the internal coin tosses of $D$. \end{definition} @@ -1147,7 +1147,7 @@ distinguish a perfect uniform random generator from $G$ with a non negligible probability. The interested reader is referred to~\cite[chapter~3]{Goldreich} for more information. Note that it is quite easily possible to change the function $\ell$ into any polynomial -function $\ell^\prime$ satisfying $\ell^\prime(N)>N)$~\cite[Chapter 3.3]{Goldreich}. +function $\ell^\prime$ satisfying $\ell^\prime(m)>m)$~\cite[Chapter 3.3]{Goldreich}. The generation schema developed in (\ref{equation Oplus}) is based on a pseudorandom generator. Let $H$ be a cryptographic PRNG. We may assume, @@ -1452,4 +1452,4 @@ in a simulation context or in a cryptographic one. \bibliographystyle{plain} \bibliography{mabase} -\end{document} +\end{document} \ No newline at end of file