From: couturie Date: Wed, 18 Jan 2012 19:50:24 +0000 (+0100) Subject: petite modif X-Git-Url: https://bilbo.iut-bm.univ-fcomte.fr/and/gitweb/prng_gpu.git/commitdiff_plain/e55d237aba022a66cc2d7650d295b29169878f45 petite modif --- diff --git a/prng_gpu.tex b/prng_gpu.tex index 74b5d86..20e2566 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -41,8 +41,8 @@ \author{Jacques M. Bahi, Rapha\"{e}l Couturier, Christophe Guyeux, and Pierre-Cyrille Héam\thanks{Authors in alphabetic order}} -\maketitle +\IEEEcompsoctitleabstractindextext{ \begin{abstract} In this paper we present a new pseudorandom number generator (PRNG) on graphics processing units (GPU). This PRNG is based on the so-called chaotic iterations. It @@ -57,6 +57,13 @@ A chaotic version of the Blum-Goldwasser asymmetric key encryption scheme is fin \end{abstract} +} + +\maketitle + +\IEEEdisplaynotcompsoctitleabstractindextext +\IEEEpeerreviewmaketitle + \section{Introduction} @@ -631,7 +638,7 @@ Consider the phase space: \end{equation} \noindent and the map defined on $\mathcal{X}$: \begin{equation} -G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), \label{Gf} +G_f\left(S,E\right) = \left(\sigma(S), F_f(i(S),E)\right), %\label{Gf} %%RAPH, j'ai viré ce label qui existe déjà avant... \end{equation} \noindent where $\sigma$ is the \emph{shift} function defined by $\sigma (S^{n})_{n\in \mathds{N}}\in \mathcal{P}\left(\llbracket 1 ; \mathsf{N} \rrbracket\right)^\mathds{N}\longrightarrow (S^{n+1})_{n\in @@ -1235,7 +1242,7 @@ D^\prime(H(x))=D(\varphi_y(H(x))), \end{equation} where $y$ is randomly generated. By construction, $\varphi_y(H(x))=X(yx)$, thus -\begin{equation}\label{PCH-3} +\begin{equation}%\label{PCH-3} %%RAPH : j'ai viré ce label qui existe déjà, il est 3 ligne avant D^\prime(H(x))=D(yx), \end{equation} where $y$ is randomly generated.