From ab8b9d20e04e131eb774c30874380721ca122b86 Mon Sep 17 00:00:00 2001
From: couturie <couturie@carcariass.(none)>
Date: Sun, 18 Sep 2011 20:00:44 +0200
Subject: [PATCH] ajout courbe

---
 curve_time_gpu.pdf  | Bin 0 -> 7239 bytes
 curve_time_gpu.plot |  20 ++++++++++++++++++++
 prng_gpu.tex        |  37 +++++++++++++++++++++++++------------
 time_gpu.txt        |  13 +++++++++++++
 4 files changed, 58 insertions(+), 12 deletions(-)
 create mode 100644 curve_time_gpu.pdf
 create mode 100644 curve_time_gpu.plot
 create mode 100644 time_gpu.txt

diff --git a/curve_time_gpu.pdf b/curve_time_gpu.pdf
new file mode 100644
index 0000000000000000000000000000000000000000..bbc37162bd350fbb775d0078d233a3c68d1e4eb5
GIT binary patch
literal 7239
zcmb_hdpwle*Y8xP%Q&S-h2l}krFiCU+$Q(r9->^*n0c7V+?shXq;x9ulT_$NA}6|t
zl1rB<T}UZHh$5vTLW!bMdG|A@PM!CCe}9~LKAFAOUhBKov)0;c_FieaSlQ?i^vO8Q
zTiv@ea1;m+3H;aNOiW-0gdd2qAu6D_!ZsW(iijZChRZ+^D}*UvA#^%UjEWEj4<|Xi
zZ@;}@p}~ypZ~B)=nxV!u#nHQiwp=?8b**wTpT0Jzo3?{>hO1?}c~hhB<6~th(4OBd
z+xoQ5oy^tvc(d`LvOOGj)zm>fH~(Vfk;9Zorw2ZcH*FN{$T266RlFM1*`FD!EOvah
zdHv@v@1p2-aG2Ee;F}O$o&RA2sdTEMq2m2+SDnSBhRKf^;epMca&n$@Z%!$G;;0_h
zqM%r*I@^N?SFDbhdBFCi&+Mekv;L%|^xEqlnJaXssgfhIp1US3K1t?Q_a0g+QcpQ{
z|EzgQppnuU@`_Bxw&*JKo)ag*u4K}*w9a#@$3(Kv-)HT&D`}_h9PWIkCLPGu3kj+9
zSN}BUnroI)%FbD7odpxec<p`0;BzUuj;@@>^w$1`t%u_)UDa`o4m+y~LRB;X7N%ew
zrDEy6=xHkSjszp$`|0*7Xw78JQq9hM2OuU%ZuM(vpYiyx&0mkRYR<)wm6)5|{y38n
zy>qeS=AxbQWkbc0jRUnW(H6r)Nyv+UYc~rrOos@s;>%pwAyLtjQoYV>U#vrxT3Bwo
z$LuyKyBElOnV)wzA!(GDn^(IiD!`M?&bq=Aq_5c;E$3BGO$oWQA~R?nIjB0fp;Ey&
zdI`D9eyDr>!EAfMkcmpqfmx`3g6m=_kwCt))Ps3_M3Zk~QG8}~H*Q)b%HB7%Qi1GK
zongK)W#5P*IbZwZL7k}Hwp>$@28%bz{^&y`6%{m2MQ*=E{t_~|1F3UV*d^1XI)7`L
zuj;_*njVWi;c1q^D$Dn~YD$SP+4JGouJ^GP0Qq58y7~FXo}7dcSz1{<vs*$9F;U&9
zd_Xh70uGewlRFC7(W`Nlxz*L_`S6zo?Gz<p@bW>VnzB2{`!!k#4B7DVfJs6}e|y0-
zLop+bc}M)=RMp4qk_C@4k$V9GrzKDHI)gW9K6^K8;F#QPTKTHS$00Z$=BcMEpAp0l
z-P&eYtVTa`JWza9t)aH^?j-~DivI8+NwXVa(*)g<spKB%K2hXT=R>!Q`}?{$R~{})
zX?QtMQx#cw)l>Zbx%0c$!MqB3b<y+ZK9&4sSBzUsKIbJLuYKFnyzI(A+t=pVk95gb
z3(5x~o)6IPhs_-?@D2WxuN7eIYS$YfDx7ZEH6d*!Z+64ir=+L?$Ed;1qFsiM1nfEY
z-sx!?J=j!$&MAsNpEYoe=ACC)aN8*5ExtCjM!%xY_UjGL{MGDvDW7<LLC^M|u6?|Q
zQ}Rk_diI=0IV<0s4S!hjsy;MmssHLtdL^&yRXqIGoG%++6@V(u?|9I*vU`o_ZnyS>
zT+<1Mvu+(f5K~g}M9*wEA@2O4UOsCpnb?{-O$GO+E8}Rd#^h;H@-^$VOJ54ke{`~}
zi8ynV{V+!b*ZNVF`)IwkiW_;BBb?$QT-oF<<TbhXR)g=%CU@@1m4j3zpRZJ<%dtG&
zBIYg%&+WQ>Q`T0`4~v!Rw(-B*Dt^D=)8siMrCNl~8m&ZNgjFxBW?|n10)>bhrIEi^
zHuo?g0=qB*5!ex7aTpc?3FM6j%M?5rB2n?aIIt)}_$WleY99`EMZ|(&5fc%Es^}sT
zFx?Q;8wPa~g541b3fQeB=yEp{R7Qw^;Q$dE0T3q;WD`&*VM{Ovh++sUu&y{j8Z`@3
zF;Z{=8n6qJ8778cdk#wsdE+p%U2(n;KnTVle-OpcM{D(nq$LAoa0P*55Tn*RA}E6e
zRv^L%;k#~wzXN=K4IJ$3;s_Dw^id;aZ#AmQ)c}XdxqgR{z2?{|4M+R?DmEQmv|xx4
z%rUULmBShj+a<OLHv~aBOoq%|R*0A>;s{ZJ2r|SVWbTly0C#dkV$_n&5J4m&?7$cu
z6Np6Elfy#UVs9ML08{kqL!n_F#2&zbqfn?2_HT^u`}{{LSjCNTjC>pXgl<420v;+A
z^Mq{t!}s4MF{Cjq6#VxwX73oCh@r_I8i_PUmD!4iNEijked7mX?2%#Nv0Sz0gI{9~
zKM=TrZ_XEUzRlf&{ZTB_vE%@;9LqS&xj&@MPrjE;ofteI_D?~w0Gq{Ij|S-x2{g!n
zN`wr^1Yhh_5GV$r!NKNYCbn?^734faXp3+H*`re|zStTjii1~xROK+u`GH&ncoKF)
z5uOLwFk~F;$PtUd>&OBt3mUw76ox`F1gIbjzy{QYm%~o53+xK7f*G(s%!FAm0tdi>
zFdOE;JeUvjIeY{bzyk1B2n)HvVps%=VKEYd@L@4W0*ko}F&h>O8B7F5;b1rf4uiwt
za6}}~kvRbzc@Pprz(Vt5vSag6_l+EiemoO_7x~fYmScw~B9%a<)4v^;R;`kASM*dl
zGM7lw&0xiyU@P#fU6Nwb$G2%HY~`C-o3ETTbAgMc*_5i-u54YOlQ}o_ZZ2P-3pIJv
zJ<DEw-LpQ{Y^Pn_xJhSgGNmC6kB8fvB_UcD9`mXWkpf?*ZhZ5x_|5R^;i=j&j3hH?
z?##>wFS3J`b;<|!YK160T~X4@YIVve+|1HbaLjU#N!x7^Z}FnT#gy}cOhAoGj@G!)
zq7`rxquN%<<)7OrBHq6rEE>GfxKE7~82&Y~Obdd{ijQ_QEbE&R%(qGQcwH9xBAc@2
z;i2_8`nJV;{Bmko$8Oh>tsiz??0Zq?9(-z(cf>iHD=X9v9WB3o@7|pQQuy7Tq414E
z70>*>5|j_A_KDi=CKg^4?KAO6-G6+=y^oI<S+8^}So6^EqMh&B&3(}sNzdx$zAww<
zbml2<IJCBfE^g}|AK+T2uwJJy&dVt$z4;_f_lVbuC^xy2_3jf3qg`Frx-ZH+7I8v*
z{Y*-XmqTTy{|Q18Ni)kw`!~vwWLra5w=fNz<R>n6hkhrTAKLPV+&mBbX*-&y#Egv|
zY(IOaHNo;Kd+!N%G_A$VlXNdmKK~F0nbc@T-OEFoV%$pdqa$(eZ(pBkpxXDg%xS}N
zPh0tjx}F<rjLw?h2!8m7Y4z>TUE#O#AC%47m-JbxdRMvsSr^~+o<f`gu^~Et(;rv8
z8=_356OUI`b7$X}8sTM;HRPl@b5VvsS90y$pA9o6?fm@JJmAhil<is{d5!0{JCN&Z
z^O@2u6W&hy%Q|3L>5jm;H}yiMJW2MwkUKkL-@9uoK3Vv<@m2k=7phO3F>&TseB5o;
zVa@S3`F6Vk)MM~2rxQNE^My7nUdSAO1@UP(j5x0&#}$7(=G;E9O2S_<RNC|Ty1tJ<
znz~w=+BkKRsmUWW_w|b!#kA(;TLVPRHt7J*a%qEV43+DpSW*1qWX~r1o^#3}2csl}
zkc6Z!zF~=R7E3pTJ5v^>6O_tWcjBT9>`(RY4ZrcK{!PpoH&3;@2lzRk&aMxgU>wup
zY*VPWt=#0#x2A(@l@sq>6<f?k-NS4*{y}m0&>pd==}YY+r8ZZsu9c}%2a?mv78S4i
zZ9?-D{6!%(X#9TL+q=fy)=4kFa47%w_TN`h4m8*|_|zxYjFY?Lw{Bv^q}Ig7HQ}B1
z;iL<SF>4jJN7PvOa-W&pR9RqA8l`D;(BZO1>zUoEYQs>@5sgdM#^zUY6|2~ak<+EN
zc)xy6;g*In^_EoUmR&Ai*Cp1zJx+Sl`MyoP!Or*~Z{zv>o3=C-^h{P|nH`z7>WX5J
zT<PE?Mr3HCWebTGId2fB+Mc*1F5==1!OFgiQrC)#^A|~*2lo%(@XnH>)RPPITSI*J
z{x+xMcVWQ1(>Ev8EKR=9wDmvpCikbMpHsFP=r^8~+9<VeW=GqpJ+c1$a&dY5eN(o9
zf1$d2YSMLHS;l3HMMqCvu0uKefq{zq`?&I(o(_?MZA$6f3cEdR1Z~sEyBVph()}5x
zDMe*3*a~|S+Hj`c2R`Q)UcA({KS?@wxV*f1c0<XDbC=u4**BZ%n6EM3DMmjN9m}HS
zJ*4^`4F-NeCwk5#z26kVisWe;vmPi-I!(0Lv9`Gne_A!SFTPTc7hu=IBKo{786t<$
z+kNtjYL$*nfVK*!yp41`Cg%x`RQt^5PvDnAd6x^hX!@YwOYERRPPvf>eC_#1(H;)f
znK*M}Yy`)p@svU3lS_GL7tMG4uuxYAepD4rhzXt7BL1U3{ZcG5#z`&5DCERUyVFk3
zhhH{_w-lv3-N&jr-&Cx9!am5gKB~VZ^_lfNTiR5$JtgkK&7WtKsU=nZW#69T9B+2I
zAvOj-$;T_M%2=N}Wf?nWyHTFo@e67(jV5Qa<r?A-^fq#HTZMbu!&hWiuACKZY4o4H
zt&dtan%KSD80D1Qx_)r$WPKk(OSye1rBdrw=ezc{LY&&2MScq)b1TN;@dp<?kBzkQ
zT(954T&RveHdm{E=VboGx5Qmuv&pxXwCm9RtnE2og*ZLfb$i{eYB{y{3{G0L(cWdD
z@s$=$hx4po3@px<AFPoi<v71fR(s_<qkht6-)CZ4ZB|(O4MxO_BD?BD`Ku2_)aPre
zSIMjGXj-~95w9>1fpeIA>oqlf+U3QUZkHBl&)WT9e$^!x;rfP?=d!tBDKD-)&5@e!
zpgdmn=|IN)bFRgeb^Y-kMSlhz|1c%;sD-4&|AXS0gtY&BwTpaF@#k)rhbuY8ZWkh(
ziv3HYPdnlgKk6pUFDm69W(OQTz4rDvzm)VFizNI%znW{Dcp5)3wnMe!S!=$ZFD>*P
z@lw@|7uWRra+3-!mlsqw*8ipp9qAOTRh%{JYFR^z)qjd69PWv7ZrIsX(Hrc{J|H(Z
zcVoYqg)+a_sqfS!ZBOF$n6ryYuX=5un}<+4KeY#)Q1U%>rTI<(N!$O{rwHDWfK4^J
z$83}*2QSBEhiopE9!a(Lyb!7vRdajC>$DH&_O_{|4P~8DvT-im`ElC{Mgc3`FzLdK
zmlvuHTb4wt3<Wc<&R2vh&Z%p-!yO&%CDx4u)c(@2>QV~DxTquZ)=v5M^j+OeTRPo*
zQ;OE5zLw9<6vis+l6{ERHzzjw|K=U}G+k~`#s6vX#E_bKulcrb_wLiP>7qNHsyI9@
zW4+Or54nk%+mNTLC7-UqYhD+2HqUty;ym%~#-11Rbvo5uonDU{(%5}5)~V;TK5ehx
zN4lN=mqgdcnNE93Zbcm(*N2;!V`_2mx}3q2fR3!3L(}`S2C7ZwrIzc~%Z2Mnwp;H=
zkr0b;WefeMDytoE4_n}y?BU(KB{%PaKXsXN^Kj?ya?q^kE8`4wa-VjZd~mD_Xi}fU
z7i#m;9$A)`np_Hz_T2M)rL7az-_<+NS!X?<airq%4(Y3-w)gxld7Zj=B*Lfsczyc#
zoX3})ZqnCD<h>L>9Puh;E@*nfo#Xo#LmDjY;AK-)et$VRonbbm@WI6L1qD{p4euYZ
zQ(wB6bVpdwdbcYtF6L@Nl|wpjH+GgSu@CxdhH7_jU!Q}5{e#@pHiGfnz#TCk?!tc4
z>+6%DEmfbk_bTfjXuLCYdg|S|(`L@%Y9z+4sdurM+gg;@)LWr_p<4ds<n0mz=YqM7
z)gcx~*Bx`w%1&4y_j$%%h}dV#{_B-P_xxQoN8WFXoS+;xm^Z^IZ^6b)uOj)`KErpH
zpp#Rbzxb5*eYxg$zv*&aZD{$kYg;;sUT%8wnA-H_srUIW+}S=iyfo+)iiMmn_~nV~
z`WTBg?AFrkmix4H*1HnB-feN`Q|I~b5+1h~23(t-r`&EgU2$OLBA3gxk+lBzk9YQj
zlg3Zoy4QMl!kes?9l7%D(x|SuPAi)-`HJYg!IXGE>7peI<@Q&hmNo1z4-=@f%bpEt
zW*OVTR}Zp>FTOp$c6vnU8&KxlY&&LLyFOhbck-3($IN249@{hP_uezppT-m<=BlW^
zn~~$Ws<v$Am4&<1jg1C8Xz>{*hR3zI@AAZs?|;AL%I<SNp5(`Fdf!i>s~sK2j-UiG
z)$rR9)MS|ioO^>16!J#`Ieb&CH`1$G5Qk-|<w<eGI|?lkHpezxgt&z}xiiCqn1(E^
zWptd$G6uL_BYF~sP%l8%5EMh;P;a`x($&Fc0mdLPlJJB)aN&d`JT6~sBr(;Ji5P(~
zMuxQ@84DU@s<qnD1wsV^ZV(5Bi28>51U&+2DHI?AcaKnkC<r3xQ?&r3h!tSu3hvq?
zfM8~-#YRz~5e$chhU$ls^aY|om|$pV2;+$`k*Eha^u%F&lp)dMix&cYGDA44zlrh1
z`ZAmJnF1cnSq&5P@$i_Uu{$V7z=tr!41Yl|YN|z{Ap~*&!$6O~ATjj_1ca%F2Om8u
zgJQr!m<%F=$r#fl{K3M%sR9c?7YVokjEq1ZffdX|M5bEHT^yk0Y=IaZx&A^leFK6P
zJo@JUf<Yi6|NQPCjH54a0(guZ!7VZ%%nEcd=x)J$NY4$?6GH9;nh``WGBl#ljEo47
z3H%c$2sse71Z`l@7XB|pf8hK<R3LH(i9iqJ2Mf6Z6e8=BAt3{0vbo^0#)a@BT4kc6
zoF*_9ogbX@FS?5%baec`9meBfd5rNHSqYfIJaDUBVf9~T$-fv_7W12#!e9|swh>rN
z7~vwAMPd+J0<e?CGzt)icnpxn451L*xfv+PZW!dC7Tp9aq8yZq&}G}qoQsYOxEyTT
z7;zc=KvOM=9t#Oz1ana>y0*@U<GCFA$Ur6me@6i$CYB2V(Fl+mvSAF7&IDU2Sj0ho
zf{?Lb5Z?sBm^Io90+#*?G?pe<uKaIce*^f3WRa0TSpj(ie=Aya9P}@J{ym`Yl^WE4
zQ>{>}4*&8?@Iy~xtgdMPQ(4gg?Gr3Kz^&M3)yDR@8zO{2FNYx8;zR;O#1jaB4^#sg
zi<J>Zz#9^11VajqNL+#^YT@x(V@Lv#_E<Q6-nD?m9m_3kFaTYV^#~LF#*2jxkj;Zp
zHb5B544rQcM~Mgt0F5)y4#Mi}$OocQC?pCL0FBbX4;pB{VIPP;Mx#;;f1we`c+eXB
zJ0F2a`GpUUCxGVc&wQj`_y`md@b^!ARM4jTiAKbeK<n`*K8nFFd;}`~7aEa7`9%i>
zPXQg@F+5bn0R1Tu_>VdWcH@MD&NCT;T?L?e%9_p)yn-JffUv{>-RKookhh5yo?vZ3
zGoaX5TNoNrNd^{{22^W2#lXhE+``hFXioqCIefA1vlwNFP+5SeG&~ijscG$OgZm$L
CBw1nr

literal 0
HcmV?d00001

diff --git a/curve_time_gpu.plot b/curve_time_gpu.plot
new file mode 100644
index 0000000..4326e12
--- /dev/null
+++ b/curve_time_gpu.plot
@@ -0,0 +1,20 @@
+# Analysis description 
+set encoding iso_8859_1
+set terminal x11
+set size 1,0.5
+set term postscript enhanced portrait "Helvetica" 12
+#set title "Performance on homogeneous cluster"
+set ylabel "Random numbers generated / second" 
+set xlabel "Number of threads used by the GPU" 
+#set nologscale; 
+set logscale x;
+set logscale y;
+#set label "Taille" at -0.002,2.1 right
+#set label "file" at -0.003,2 right
+#set key 1500,1600
+#set xrange [20:200]
+#set yrange [0:300]
+#set offsets 0,0,2,2
+set key left top
+plot 'time_gpu.txt' using 1:2 t "naive prng gpu"  with linespoints lt 2 lw 2 ps 0 pt 5,\
+'time_gpu.txt' using 1:3 t "optimized prng gpu"  with linespoints lt 1 lw 2 ps 0 pt 5
diff --git a/prng_gpu.tex b/prng_gpu.tex
index fa71e5b..d1fb7a6 100644
--- a/prng_gpu.tex
+++ b/prng_gpu.tex
@@ -674,7 +674,7 @@ achieved out. Then in order to apply  the negation on these bits we can simply
 apply the  xor operator between  the current number  and the strategy. In
 order to obtain the strategy we also use a classical PRNG.
 
-Here  is an  example with  16-bits numbers  showing how  the bit  operations are
+Here  is an  example with  16-bits numbers  showing how  the bitwise  operations are
 applied.  Suppose  that $x$ and the  strategy $S^i$ are defined  in binary mode.
 Then the following table shows the result of $x$ xor $S^i$.
 $$
@@ -738,17 +738,18 @@ unsigned int CIprng() {
 
 
 
-In listing~\ref{algo:seqCIprng}  a sequential  version of our  chaotic iterations
-based PRNG  is presented. The xor operator is represented by \textasciicircum. This function  uses three classical  64-bits PRNG: the
-\texttt{xorshift},   the  \texttt{xor128}  and   the  \texttt{xorwow}.   In  the
-following,  we  call them  xor-like  PRNGSs.   These  three PRNGs  are  presented
-in~\cite{Marsaglia2003}.  As each xor-like  PRNG used works with 64-bits  and as our PRNG
-works  with 32-bits, the  use of  \texttt{(unsigned int)}  selects the  32 least
-significant bits  whereas \texttt{(unsigned int)(t3$>>$32)} selects  the 32 most
-significants  bits of the  variable \texttt{t}.  So to  produce a  random number
-realizes 6  xor operations with  6 32-bits numbers  produced by 3  64-bits PRNG.
-This version  successes the  BigCrush of the  TestU01 battery [P.   L’ecuyer and
-  R. Simard. Testu01].
+In listing~\ref{algo:seqCIprng}  a sequential version of  our chaotic iterations
+based   PRNG    is   presented.   The    xor   operator   is    represented   by
+\textasciicircum.  This   function  uses  three  classical   64-bits  PRNG:  the
+\texttt{xorshift},  the   \texttt{xor128}  and  the   \texttt{xorwow}.   In  the
+following,  we call  them  xor-like  PRNGSs.  These  three  PRNGs are  presented
+in~\cite{Marsaglia2003}.  As each  xor-like PRNG used works with  64-bits and as
+our PRNG works  with 32-bits, the use of \texttt{(unsigned  int)} selects the 32
+least significant bits whereas  \texttt{(unsigned int)(t3$>>$32)} selects the 32
+most  significants bits  of the  variable \texttt{t}.   So to  produce  a random
+number realizes  6 xor operations with  6 32-bits numbers produced  by 3 64-bits
+PRNG.  This version successes the  BigCrush of the TestU01 battery [P.  L’ecuyer
+  and R. Simard. Testu01].
 
 \section{Efficient prng based on chaotic iterations on GPU}
 
@@ -835,6 +836,8 @@ which represent the indexes of the  other threads for which the results are used
 by the  current thread. In  the algorithm, we  consider that a  64-bits xor-like
 PRNG is used, that is why both 32-bits parts are used.
 
+This version also succeed to the BigCrush batteries of tests.
+
 \begin{algorithm}
 
 \KwIn{InternalVarXorLikeArray: array with internal variables of 1 xor-like PRNGs in global memory\;
@@ -863,10 +866,20 @@ tab1, tab2: Arrays containing permutations of size permutation\_size\;}
 \caption{main kernel for the chaotic iterations based PRNG GPU efficient version}
 \label{algo:gpu_kernel2}
 \end{algorithm}
+
+
+
 \section{Experiments}
 
 Differents experiments have been performed in order to measure the generation speed.
+\begin{figure}[t]
+\begin{center}
+  \includegraphics[scale=.5]{curve_time_gpu.pdf}
 
+\end{center}
+\caption{Number of random numbers generated per second}
+\label{fig:time_naive_gpu}
+\end{figure}
 
 First of all we have compared the time to generate X random numbers with both the CPU version and the GPU version. 
 
diff --git a/time_gpu.txt b/time_gpu.txt
new file mode 100644
index 0000000..843bf09
--- /dev/null
+++ b/time_gpu.txt
@@ -0,0 +1,13 @@
+#threads								naive nb rand/s					opti
+10240										1958396000.03						13162317203.28
+20480										2607152000.80						17544514829.35
+30720										2932438000.82						19734780759.37
+51200										2787838000.25						18772978895.58
+76800										2926940000.81						19718338110.60
+102400									2778762000.41						18800512068.39
+153600									2927902000.36						19692840251.08
+512000									2905399000.83						19605898582.49
+768000									2826752000.70						19717903047.22
+1048576									2717620000.40						19625932346.26
+2097152									2720592856.85						19571418202.69
+5242880									2542399000.19						19497621662.45
-- 
2.39.5