From bce6fe373543bc9037b3de8504d9599882257bf5 Mon Sep 17 00:00:00 2001 From: guyeux Date: Sun, 30 Oct 2011 16:36:37 +0100 Subject: [PATCH 1/1] Autres modifs --- prng_gpu.tex | 51 ++++++++++++++++++++++++++------------------------- 1 file changed, 26 insertions(+), 25 deletions(-) diff --git a/prng_gpu.tex b/prng_gpu.tex index 5431409..11dd246 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -34,7 +34,7 @@ \newcommand{\alert}[1]{\begin{color}{blue}\textit{#1}\end{color}} -\title{Efficient generation of pseudo random numbers based on chaotic iterations +\title{Efficient Generation of Pseudo-Random Bumbers based on Chaotic Iterations on GPU} \begin{document} @@ -59,11 +59,11 @@ Interet de générer des nombres alea sur GPU \label{section:BASIC RECALLS} This section is devoted to basic definitions and terminologies in the fields of topological chaos and chaotic iterations. -\subsection{Devaney's chaotic dynamical systems} +\subsection{Devaney's Chaotic Dynamical Systems} In the sequel $S^{n}$ denotes the $n^{th}$ term of a sequence $S$ and $V_{i}$ denotes the $i^{th}$ component of a vector $V$. $f^{k}=f\circ ...\circ f$ -denotes the $k^{th}$ composition of a function $f$. Finally, the following +is for the $k^{th}$ composition of a function $f$. Finally, the following notation is used: $\llbracket1;N\rrbracket=\{1,2,\hdots,N\}$. @@ -89,7 +89,7 @@ necessarily the same period). \end{definition} -\begin{definition} +\begin{definition}[Devaney's formulation of chaos~\cite{Devaney}] $f$ is said to be \emph{chaotic} on $(\mathcal{X},\tau)$ if $f$ is regular and topologically transitive. \end{definition} @@ -119,7 +119,7 @@ possible and occur in an unpredictable way. -\subsection{Chaotic iterations} +\subsection{Chaotic Iterations} \label{sec:chaotic iterations} @@ -135,7 +135,7 @@ denoted by $\llbracket 1, \mathsf{N} \rrbracket^\mathds{N}.$ \label{Def:chaotic iterations} The set $\mathds{B}$ denoting $\{0,1\}$, let $f:\mathds{B}^{\mathsf{N}}\longrightarrow \mathds{B}^{\mathsf{N}}$ be -a function and $S\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ be a strategy. The so-called +a function and $S\in \llbracket 1, \mathsf{N} \rrbracket^\mathds{N}$ be a ``strategy''. The so-called \emph{chaotic iterations} are defined by $x^0\in \mathds{B}^{\mathsf{N}}$ and \begin{equation} @@ -155,7 +155,7 @@ $\left(f(x^{n-1})\right)_{S^{n}}$ can be replaced by $\left(f(x^{k})\right)_{S^{n}}$, where $k