From cae68b58b70de455ef66b7312c8625f25e83a37f Mon Sep 17 00:00:00 2001 From: Christophe Guyeux Date: Wed, 17 Jun 2015 11:04:29 +0200 Subject: [PATCH] Fin de mon boulot. --- computePeriod.py | 14 ++++++++++++++ mabase.bib | 17 ++++++++++++++++- prng_gpu.tex | 5 +++++ 3 files changed, 35 insertions(+), 1 deletion(-) create mode 100644 computePeriod.py diff --git a/computePeriod.py b/computePeriod.py new file mode 100644 index 0000000..3e3a881 --- /dev/null +++ b/computePeriod.py @@ -0,0 +1,14 @@ +from operator import xor +from itertools import product +from sys import argv +N=eval(argv[-2]) +n=eval(argv[-1]) + +for s in product(range(2**N), repeat=n): + S=s*20 + for x in range(4): + print str(s)+",", + for k in range(25): + print x, + x = xor(x,S[k]) + print diff --git a/mabase.bib b/mabase.bib index 32a2081..b1d62d4 100644 --- a/mabase.bib +++ b/mabase.bib @@ -4404,4 +4404,19 @@ booktitle = "Proceedings of the {ACM}/{SIGDA} 17th International year = {2007}, } - +@inproceedings{Sidorenko:2005:CSB:2179218.2179250, + author = {Sidorenko, Andrey and Schoenmakers, Berry}, + title = {Concrete Security of the Blum-blum-shub Pseudorandom Generator}, + booktitle = {Proceedings of the 10th International Conference on Cryptography and Coding}, + series = {IMA'05}, + year = {2005}, + isbn = {3-540-30276-X, 978-3-540-30276-6}, + location = {Cirencester, UK}, + pages = {355--375}, + numpages = {21}, + url = {http://dx.doi.org/10.1007/11586821_24}, + doi = {10.1007/11586821_24}, + acmid = {2179250}, + publisher = {Springer-Verlag}, + address = {Berlin, Heidelberg}, +} diff --git a/prng_gpu.tex b/prng_gpu.tex index db219a1..8d4f21b 100644 --- a/prng_gpu.tex +++ b/prng_gpu.tex @@ -724,6 +724,11 @@ the list of cells to update in the state $x^n$ of the system (represented as an integer having $\mathsf{N}$ bits too). More precisely, the $k-$th component of this state (a binary digit) changes if and only if the $k-$th digit in the binary decomposition of $S^n$ is 1. +\begin{color}{red} +Obviously, when $S$ is periodic of period $p$, then $x$ is periodic too of +period either $p$ or $2p$, depending of the fact that, after $p$ iterations, +the state of the system may or not be the same than before these iterations. +\end{color} The single basic component presented in Eq.~\ref{equation Oplus} is of ordinary use as a good elementary brick in various PRNGs. It corresponds -- 2.39.5