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1 Introduction

1

2 Random Number Generator: Theories and
Classification

We can find many implementation of RNG in Software and Hardware but all
can be classifies generally as PRNG, TRNG and Hybrid, but new concept has
been introduce this last year’s defined by parallel and chaotic generator.

2.1 Pseudorandom Galois Generators

F2-linear generators are a well-known PRNG class of and a special case of matrix
linear recurrence modulo 2, where they are appropriate for low power and high
speed requirement. However with the limitation of the shift register state, this
generators enter to a finite and repeated state cycle and have a short period cycle.
Because of that many hardware optimization are proposed to perform a good ran-
dom and increase the period. A linear Random Number generator are defined fol-
lowing thous equations, where the first equation (1) xt = (xt,0, ..., xt,k1)s ∈ F k2
is the k-bit state vector at step n. the second equation (2) yt = (yt,0, ..., yt,w1)s

∈ F k2 is the w-bit output vector at step t, k and w are positive integers. Where,
A is a k ∗ k transition matrix with elements in F2, B is a w ∗ k output transfor-
mation matrix with elements in F2, and ui ∈ [0, 1] is the output at step t:
xt = A ∗ xt1 (1)



2 Authors Suppressed Due to Excessive Length

yt = B ∗ xt (2)

ut =
w∑̀
=l

yt,`−1 2−` = yt,0 yt,1 yt,2 (3)

The characteristic polynomial of the matrix A is xt = aixt− 1 + + akxt−k

2.2 Discrete Dynamics

3 Pseaudo Random Number Generator

We illustrate in this part of the survey all theory and concept implementation in
FPGA of the PRNG generators. An important property of all these generators
is that they are special cases of a general class of generators whose state evolves
according to a (matrix) linear recurrence modulo 2 and the bits that form the
output are also determined by a linear transformation modulo 2 applied to the
state. Except for the chaotic system where are dynamic and non linear PRNG.

Linear Feedback Shift Register Generators or LFSR use a feedback poly-
nomial driven by an exclusive-OR (XOR) as a coefficients to shift bits of the
register based on Flip-Flop. It uses an initial input called ”seed” and a n-bits
generation period of 2n − 1. However, even there are many FPGA implementa-
tion of LFSR can be founded, few of them has a optimize version on FPGA. As
in this work [15], where the authors present two types of PRNG based LFSR.
The first is called Shrinking Generator (SG), that uses two LFSRs of 67 − bit.
It consist for every clock cycle, the bit output generated will be the same of
the second LFSR-2 if the 1-bits LSB of the first LFSR-1 is ”1” or put ”0”.
The second PRNG is called alternating step generator (ASG). It uses a third
LFSR-3 of 141− bits to control which bit output will be token from the others
two LFSR of 131and137bit. However, for a small comparison purpose, the SG
has a Total period of LT = (2L2−1) ∗ 2L1−1, where the ASG has a period of
LT = 2L1(2L2−1)(2L3−1).

Linear Congruential Generators or LCG are another linear recurrence de-
scribed by xi+1 = (axi + b) mod 2n, and ”a” is called the multiplier, ”b” the
increment, and ”m” the modulus. A FPGA implementation of LCG can be
demonstrated in [22], where the authors propose two version of PRNG based
LCG. The first version is a coupled LCG (CLCG), coupling two linear congru-
ential generator. It consists the use of the first LCG-1 to generate a control
bit, and to select the output bit from the second LCG-2 following this equation
xt+1 = (a1xt + b1) mod 2n. However, the second version is a 4-stages pipeline of
two CLCG that can generate a 4-bit simultaneous. As a consequences and for ev-
ery pipeline level, a n-bit/n-pipeline will be computed with a two n-bit additions
generated by the flowing equation xt+1 = (2r ∗ xt mod 2n) + (xi + b1) mod 2n).
The results of every stage will be feedback and processed in the earlier and
following stage for more complexity.

LUT and Accumulator Generators are a digital component used or imple-
mented on FPGA to accelerate hardware optimization. The Lookup-Tables are
a fully dependent FPGA technologies vendors. Every configurable logic block
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(CLB) of FPGA include a n-Look-up Table (LUT 2/4/6/8-inputs and one out-
puts), some carry, a control logic and storage elements. In the other side, the
accumulators are an user combinatory logic circuit that uses the FPGA resources
as a components. Some of the works based on LUT are cited in [40], [38] and [39].
The authors of thous papers presents a series of a LUT optimized PRNG based
on F-2 linear matrix recursive algorithms. The basic idea is to provide a maxi-
mum area efficiency using thous optimization. As consequences and for each row
of the recurrence matrix ”A” mapped as a XOR gate, can also be implemented
in a single LUT. Also, it’s allow in the same time, the test of the characteristic
polynomial of each matrix for primitivity. Thous PRNGs proposed as LFSR or
masterine tewister MT will use the LUT as a Flip-Flips (FF), Shift Registers
(SR) or block of RAMs and then compare between them in FPGA. However,
the big drawback of this method (LUT) is when creating a long period sequence.
To do that, a large number of LUT (FF, SR, RAM) pairs must be used. Even
if an application only needs 64 bits per cycle, it must use 512 LUT-FFs to get
a period of 2512−1 for example. Even that, the authors claim a 87 percent the
performance will be wasted using this optimization.

Another implementation in [17], where the authors propose a 9-stage PRNG
of 8 bit using digital accumulator. Here, it based on

∑
∆ modulators M for

fractional frequency synthesizers and implemented as self-recursive structure.
They claims by taking a constant X as an inputs, the accumulator sum P0 is the
state variable of the system. Then and for every cycle, two outputs are generated,
the sum modulus of M or the quantization error e0 P0[i] = X +e0[i−1] and the
carry output y0 for overloads if the sum >= M . However, the proposal solution
implement a multistage of

∑
∆, where the previews stage of the accumulator

and the output M will be feedback to the early stage. Also, the authors scale the
error e0 by a coefficient inputs accumulator and multiplied by a binary variable
d ∈ 0, 1 generated by a linear feedback shift register (LFSR).

Blum Blum Shub Generators or BBS are a known efficient cryptography se-
cure PRNG proposed [1986]. It has been proposed to solve the quadratic residue
problem [1999] represented by the Rabin function of xt = xt−1

2 mod n. It’s
based on the product ”n” of two big primes number called ”Blum prime” and
are congruent to (3 modulo 4). The output bit ”j” from xt of this generator
is in first extracted by the least significant bits implemented in this equation
j = c ∗ log (log(n)), where c is a constant. Then it will be added to the final
generated binary sequence yt = xt

2 mod j. However, just a few work using
BBS are implemented in FPGA. As for this paper in [34], the authors present
an area/speed comparison without any optimization between a 4-bits LFSR and
a 16-bits BBS PRNG. Another work is founded in [32] for RFID tag applica-
tions. Here, the authors present some FPGA implementation of BBS of 160
to 512 bits using different multiplication algorithms to satisfy the main BBS
equation (A ∗BmodM). The algorithms used for comparison are classical com-
binational multiplier, classical shift adder and multiplication, Karatsuba’s multi-
plication and Montgomery’s direct modular multiplication. However, the authors



4 Authors Suppressed Due to Excessive Length

compare just the area results and they claim the uses of the ”Montgomery”
iterative approach is the low cost area in FPGA.

Mersenne Twister Generators or MT are a word-wise recurrence matrix
instead of bit-wise as for LFSR. The first implementation of this generator
use a generalized version of Feedback Shift Register called ”GFSR”. It gen-
erates an output as a state vector or an array flowing this equation x[t] =
(xM1

⊗
xM2

⊗
...), where M is the middle word 1 < M < t. However,

the GFSR are known to not reach the maximum period. To resolve that, a ma-
trix recurrence twisted for GFSR ”TGFSR” has been proposed to increase the
period. It uses a feedback polynomial of xt+k = [xM+k

⊗
(xuk | xlk+1) .A],

where k=1,2,3 and x[0]u, x[1]l are the less and most significant bit of xt (u,l are
tempering bit shifts). To uniform the outputs of TGFSR, they are tempered by
a bitwise multiplication using a binary matrix y = xt ∗T . Also, it performs the
statistical properties by reducing the dimensionality of equidistribution. In the
same purpose for a long period PRNG, the Mersenne twister (MT) is proposed
as a special case of TGFSR. We can find two main implementation of MT, the
MT11213 with a period of 219937−1 and the MT19937 with a period of 219937−1.

We can start by some implementation of TGFSR that are cited in [2]. Here,
the authors compare two FPGA implementation version of TGFSR. The first
version implement two Mersenne Twister PRNG ”MT19937” and ”MT11213”
but using Generalised Feedback Shift Registers (GFSRs) and without any hard-
ware optimization. Then, two optimized TGFSR version ”Ran” and ”Ranq1” has
been proposed based on just multiplication of fixed precision integers (with over-
flow). The comparison presented, shows the two TGFSR of the second version
has a good area optimization unlike of the first version that use block memories
RAMs for multiplications.

As for Mersenne Twister, we can find in [45]. Here, the authors propose a
3-stages pipeline version of MT19937. It uses a dual-port BRAM memories of
the FPGA to generate a long period and for multiplication operation. However,
it takes 3 cycle for every sample bit generated. In the other hand and in [27], the
authors present an MT Implementation with just 3 read for ever 1 write into the
RAM structure. This technique is resulting a single sample per cycle. Another
pipeline MT19937 implementation is in [4] using a single block RAMs to store the
state vector. The same approach has been done in [41] for ”MT2203” but using
multi ported block of RAMs to reduce HW resource instead of using multi/single
RAMs with limited block ports. Hence, compared to the two early version of
parallel MT. In [11], the authors propose two parallel version of ”MT19937”
by reducing the IO ports and bank memories RAMs. The first version is the
Interleaved Parallelization (IP) that generate a N-bit for every ”P” memories
bank separately and during a period of T = (P/Nbits) ∗ (NIO/clock). The
second version is Chunked Parallelization (CP) that claim to use a fewer block
RAMs compared to the IP version. It’s based on the idea to use the output bit
of each RAM bank as the far recurrence input for the following RAM bank.

Finally, a recent paper presented in [14]. Here, the authors compare another
simple implementation of MT19937 that use RAM banks memories as storage
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element with a new alternative solution of RAMs called circular buffer. The new
solution is based on the fixed relationship between the indexes of the words.
It considers the replacement of each step of the recurrence xt with xt+k in the
work area. This way, the linear recurrence and the buffer of registers can be
considered as a circular buffer. Here, the linear recurrence is carried out by some
combinational logic between the input and the output of the buffer. Hence, the
architecture is simplified as no logic for the table indexes is needed.

Cellular Automata or CA are proposed as a third class for exhibit chaotic or
pseudo-random behavior presented by Wolfram ”A New Kind of Science”. It’s
can be represented as an array of cells that can hold and update their internal
state dependent on local rules and the state of their neighborhood. The basic
CA can combine 3 cells, each of them has two possibilities 0, 1. It’s resuming a
state machine with a total of 8 (23 binary configuration possibilities for each CA
and resulting a 256 (28) possible rules generally referred to by their Wolfram
code. If the rule of a CA involves only XOR logic it’s called a linear rule. It will
be referred to as complement rules when using XNOR logic. Otherwise, a linear
CA represent all cells that has linear rules and an additive CA if they combine
the linear and complement rules. Another type is the uniform CA, which has the
same rule for all cells else it’s a hybrid CA. Finally, a null boundary CA is when
both the left and right neighborhood of the leftmost and rightmost terminal cell
is connected to logic 0-state.

In 2003 [?], the author implemented a custom IC of HCA that combines the
outputs of a hybrid 90/150 rules of a 37-bit CA with a 43-bit of LFSR to produce
a maximum length PRNG. However and to pass pass all the statistic tests, the
LFSR and HCA must be clocked at different frequencies to create a random
output sequence. To resolve Clocking issue, a new solution presented in [3]. Here,
the authors propose to XOR the last bit of HCA with the last bit of LFSR to
generate 1-bit per clock cycle. Following that, they found the best combination
for a high quality of PRNG is 16-bit CA with a 37-bit LFSR. In [7], they compare
the previews work LFSR/HCA [3] with a new implementation of CA called Self-
Programmable CA (SPCA) and presented in [18]. It uses the super-rule 90/156
to determine when to make a dynamic rule change in each CA cell. Here, the the
inputs rules of his neighboring cells is it self a second CA working in parallel with
the main CA. However, even it gives a better throughput than the LFSR/HCA
combination [7], it fails in the statistical test. Another CA combination solution
is cited in [33]. Here, the authors propose another combination circuit of CA and
Non-LFSR block based on A2U2 design. The main objective is to resist more
of the various forms of cryptanalysis, such as correlation attacks and algebraic
attacks. As for the outputs generated, they will pass to a mixer mechanism to
increase the complexity for decryption.

In [1], the authors propose two Hybrid CA for an encryption system ap-
plication. The first HCA-1 implemention work as a PRNG and use two rules
90/150 to generate a real-time key stream. The second HCA-2 is implemented
as a block cipher and use a combination of 51/153/195 rules. However, to select
witch rules will be used by the block cipher HCA-2, the PRNG or HCA-1 gen-
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erate an encryption rules to switch the rules and provide each cell of HCA-2 is
own rules.

A new implementation CA is presented in [13], where the authors create an
automatic software tool to generator CA. It’s based on the algebraic normal
form (ANF) representation to generate a RTL code of any hybrid CA depend-
ing on ID rules provided as inputs. Using ANF representation and with ID=101
for 3 neighbor, the outputs generated will be identical to Matlab results follow-
ing this formula (y = [K0

⊗
K1(U1)

⊗
K2(U2)

⊗
K3(U3)

⊗
K4(U1 ∗

U2)
⊗

... K7(U1 ∗ U2 ∗ U3)] ... ∗mask). Then in recent papers [20], they claim
by using a chain of HCA instead of single HCA will increase the ratio of fre-
quency/ares and cryptography.

Another and different concept of CA is proposed in [25]. It uses a new way
to implement the rules for 1-d CA using the real time computer clock sequence.
Here, the initial state configuration and his length is the product of day, month,
year, hour, min and seconds. However, over a period of t = x(60 − x), it uses
two functional rules. The first rule is the product of minutes by seconds m ∗ s,
and the second rule is the number of minutes divided by the number of seconds
multiplied by a constantms ∗ c.

Chaotic Systems are interests theory to generate random number. Here, the
use of this theory has been increase due to the sensitivity to initial conditions,
unpredictability and ability to reciprocal synchronization. However, the finite
precision of arithmetic and quantization generate a non-ideal and periodic ran-
dom number. We can found chaotic PRNG proposed by using a differential
equations in a continuous time domain. In other side, the most chaotic PRNG
are implemented based on the recurrent sequences using chaotic maps in a dis-
crete time domain x0 ∈ R where xn+1 = f(xn). Hence, from the cryptographers
point of view, the most essential drawbacks of the chaotic systems are: weak re-
sistance to recovery of parameters, relatively low digital precision comparing to
the analog generators, periodicity problems, non ideal probability distributions,
higher level of correlation and suffer from serious dynamical degradation due to
quantization error and finite representation of system states, including loss of
periodicity and shorter pseudo-orbits.

Chaotic Map Generators describe here are a generators based on a polyno-
mial mapping that is equivalent to recurrence matrix degree 2. Here, the chaotic
map generators uses a non-linear dynamic transformation. For this survey we
found a logistic map based on this equation of xt+1 = rxt (1xt), where r is
what called the biotic potential (3, 57 < r < 4, 0). Also, there is Hénon map
which is also a discrete-time dynamical system according to the equations of
xt+1 = yt + (1− ax2t ) and yt+1 = bxt+1, where ”a” and ”b” are called canoni-
cal parameters. Following that, a chaotic map PRNG is implemented on FPGA
and presented in in [10]. Here, the authors start from earlier study done of some
FPGA implementation of thous chaotic map PRNG and presented in [8] and [9].
The authors implement two new optimization version of PRNG based on chaotic
logistic map using the XSG Xilinx tool for more HW optimization. The first is
a log-LUT based on LUT blocs and a high-speed carry line of the FPGA. Then,



Survey on Hardware Implementation of Random Number Generators 7

the second is Log-DSP that use directly DSP component of FPGA. However,
they add delays to ensure parallel sequence generation and a complex initial
sequence used for a better NIST test results.

Another work presented in [31], where the authors demonstrate a mixed
version using tow chaotic map to increase the security level against plaintex
attacks. They show by coupling a chaotic encryption system (ENS) based on
2-D Hénon map and control system (CRS) based on 1-D logistic map. The ENS
is used to generate the chaotic sequence, and the CSR to control the multiplexer
and choose the outputs bits of ENS according to the value generated by the
logistic map. Here, the final outputs bits are the XOR of the MSB of 32-bit CSR
with his neighbor LSB following some rules. In the same approach and in [19],
the authors uses a chaotic logistic map to generate output. They increase the
period by a reseeding module, where the output sequence will be XORed with
a vector mixing module based on auxiliary linear generator. Another solution
proposed in [46], where the authors presents a chaos system based on three
dynamic nonlinear transform arithmetic DNT process. It’s a parallel structure
that transform an input 3 times and improve a high cycle-length and distribution
output sequence. However, for each DNT module it initiates his 2x256 code book
and obtain the binary input sequence. Then, transformed and look up it using
the inputs as parameters xt+1 = xt (C(w) R(q)).

Spationtemporal Chaos Geneators are a temporally chaotic system as for a
chaotic map. It’s also a spatially and there is many mathematical models can be
use to represent this type of generator. In [30] and to achieve a high operation
speed, a bi-directional coupled chaotic map lattices (CML) has been used as a
models represented by xt+1(i) = (1− ε)f(xt(i) + ε

2 (f(xt(i− 1) + f(xn(i+ 1),
where n and i are respectively temporal and spatial indexes of discrete lattices. ε
is the couple coefficient, L is the number of the total spatial lattices and f(x) is a
logistic map. They first deal with continuous domain with digitized all operand
to be suited for HW implementation by using and modifying the CML to a finite
integer set. Then second and to avoid finite precision chaotic map problem, they
compute only the insignificant bit is subject to be an output.

Fibonacci post-processing Generators presented in [29]. It’s uses a non-autonomous
4D hyperchaotic-based PRNG post processing based on Fibonacci series and
driven by a 256-bit LFSR. The post processing is based on two loop feedback,
where in first loop, they use a fixed 1-bit static rotation to suppress the short-
term predictability. Then, the second loop is based on a variable rotation con-
trolled using Fibonacci series of K-bit to enhances differential sensitivity if there
is a change at any bit when the other bit propagate during n-cycle.

Chaotic Iteration or CI has been proposed by the authors in [?] [?] to imple-
ment a new post processing with the same chaotic theory characteristic defined
by Devaney, Li-Yorke, to give better statistic test and increase cryptography.
However, they claim their chaotic iterations generate a set of vectors (Boolean)
and they are defined by an initial state x0, an iteration function f, and a strategy
S said to be a chaotic strategy. Where, at the n-th iteration, only the Sn − th
cell is iterated. Note that in a more general formulation, Sn can be a subset
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of components and f((xn−1)Sn) can be replaced by f((xn)Sn) , where k < n,
describing for example delays transmission. The main requirement is to prevent
the machine from working in silos, by taking at each iterate a new input from the
outside world. By doing so, the finite state machine does not necessarily enter
into a loop: a same state can be visited twice, but with two completely different
future evolution, depending on the inputs the machine receive. Over four version
proposed, one of them has been implemented on FPGA using Chaotic iteration
as post processing which use a BBS and XORshift PRNG as generator. The
internal state x is a vector of 16-bits, whereas two 64-bit XORshift generators
are provided as entropy sources and then the outputs are spread into four 32-bit
integers. Then for each integer, there are 16 (2-bits) components that can be
found and every 12 of these components are used to update the states. Lastly,
the 4 least significant bits (LSBs) of the output BBS generator decide if the state
must be updated with the considered 13-bits block or not.

4 True Random Number Generator

Passing now to the second section of the RNG theory and concept part. It con-
tains analyses that been found for the fpga implementations of True RNG. As
been defined earlier, TRNG are completely physical generator that use many
hardware component and polynomial been produced, where FPGA is one HW
support that this survey illustrate all works around it as an accelerator and
for security purpose. However, man techniques and HW optimization has been
demonstrated are show in this survey, where we can found the use the FPGA
component optimized or mixing external component with FPGA or post pro-
cessing FPGA to generate RNG.

Phase-Locked Loop or PLL circuit in general is derived by an external clock
generator source like quartz or RC circuit, and which can set static or dy-
namic configuration. A PLL is completely depended of the physical environ-
ment like power, temperature or others that cause a very high secure RNG
and reduce attacks. the TRNG generator based PLL will use a jitter extrac-
tor to generate randomness, wich is a short-term variation of the clock prop-
agation. The most common jitter measurements used by FPGA vendors are
period jitter and cycle-to-cycle jitter. The period jitter is defined as the differ-
ence between the n-th clock period and the mean clock period. However and in
FPGA, a PLL is is based on the size of the clock jitter, the frequency divided
by the VCO and the his loop filter bandwidth. Generally, we can find an analog
PLL TRNG that extract the ”intrinsic jitter” causes by the nois of his VCO
for example or a digital PLL generator that use a synchronous/asynchronous
Flip-Flop as an extractor. we can find an old implementation in [16], where
the authors propose an analysis about extracting randomness from the jitter
of an PLL implemented on Altera FPLD. Their studies is based on detecting
the jitter by the sampling the reference clock signal (FCLK) using a correlated
signal synthesized in the PLL (FCLG) where FCLG = FCLK(KM/KD), and
the maximum distance between the two clock (CLK,CLG) must be minimum
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MAX(∆Tmin) < σjit. However, they confirm in ideal environment condition and
without a jitter the sampled output or random is deterministic under a period of
TQ = KDTCLK = KmTCLG. Then, they conclude in a real condition σjit 6= 0
the randomness is not deterministic and depending on jitter distribution where
the MAX(∆Tmin) = TCLK ∗GCD(2KM ,KD)/4KM .

Where, in [35] the authors demonstrate by taking [16] as model and combined
more than one PLL in parallel or series to increase the significantly sensitivity
on the jitter S = FCLKMAX(∆Tmin) and the output-bit of the generator
compared to the use of one PLL. The configuration of multiple PLL are based on
input/output length, VCO frequency and MUL/DIV factors (KM/KD). In [36]
the authors test the impact of the the change on operation condition environment
as temperature of an PLL and illustrate that with low bandwidth of PFF cause
a higher number of the critical samples, decreases the output jitter and thus
increase the tracking jitter. As an PLL application system, the work proposed
in [43] they explore an embedded system with TRNG and based on PLL to
extract randomness from the jitter and propose two version where the slower of
40kbps can pass the statistic tests.

ring oxialltor In [24] and in [23], the authors propose a TRNG based on two
ring oscillators clocked by different clock generated by an internal PLL on FPGA.
The authors also extract the jitter of the 2 RO implement in only one CLB
slice using a simpler. Where, in [12], propose a new approach that can replace
RO based on inverters using XOR combination between Fibonacci (FIRO) and
Galois ring oscillators (GARO). the main key consists of a number of inverters
and connected in a cascade together with XOR logic gates forming a feedback
in an analogous way where the feedback polynomial form is f(x) = (1 + x)h(x)
where h(1) = 1 and the result show with the new method can achieve a stable
state less than classical RO.

In [42], the authors propose a Hybrid implementation on FPGA of TRNG
based on RO and PRNG based on BBS generators and with high operation
frequency of 400Mhz. However, they generate a low off-chip frequency based on
resistor and capacitors RC and it was notice by implementing BBS using ALU
structure for squaring and modulo operation the period will be [(4.5 ∗ n2 + n)].

Self-timed ring STR In [6] and [5], the authors propose another alternative
more based on Self-Timed Ring (STR) robust to environment (power, tempera-
ture) than RO based inverter. The SRT approach consist of a ripple of L stage of
FIFO as a ring (Ci)1≤i≤L with a phase of ∆ϕ = T/2L, and extract jitter of each
oscillator stage using two asynchronous handshaking protocol as even that can
be ”taken” or ”bubble”. However, the outputs randomness bits event (Si)1≤i≤L
will be samples using a flip-flop by the main clock and the result will be com-
bined with a XOR operation ψ = s1 ⊕ s2 ⊕ ... ⊕ sL. Secondly, the authors
suggest that to avoid the limitation frequency of the STR by the long period
delay, the maximum frequency is achieve when the propagation delay (forward
and reverse static delay) is near to ring accuracy (N of token and bubble) and
[NT /NB ∼= Dff/Drr ' 1].
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Metastability In [44], the authors present a study of using Metastability phe-
nomena as a entropy source generated by 5 IRO stage. They claim that by
implementing the inverter as loop ring and using a Control Clock Generator to
switch the connectivity between the IRO stages flowing two mode (MS, Genera-
tion), the output voltage converges to metastability level and stays longer than
using bi-stable circuit (Flip-Flop) causing a high entropy. However, the authors
wan to estimate the robustness of the system after applying the sampling process
in a different process and environment variation modes using CMOS process and
FPGA, and they find that it must added another stage for a higher quality out-
put as decreasing the operation rate, applying a Von-Neumann post-processing
and influences the loads (RC parasitic) of the last inverter, when it was noted
that just post-processing is used in FPGA.

Another metastability uses as a RNG founded in [28], where the authors pro-
pose a TRNG using the metastability of the flip-flop when there is a violation
in setup/hold time. The system is based on closed-loop feedback mechanism for
auto-adjustment on delay ∆ controlled by the Programmable delay lines (PDLs)
stage based on LUT to avoid violation and maintain the metastability. However,
the system use at-speed monitor to keep tracking the output bit probability and
proportional-integral (PI) controller to decides to add/subtract the delay differ-
ence (∆ → 0). The probability of the output is ProbOut = 1 = Q(∆/sigma)
where Q(x) = 1/

√
4Π

∫
x
∞expr(−u2/2)du. Where, the updated/corrected delay

difference is the difference between the bias/skew caused by the routing asym-
metric with the delay induce by the environment condition and the correct delay
injected by the PDL (∆ = ∆p +∆b −∆f ). A revision version proposed by [26],
to analyze the probability and maintain metastability state for a long period
to avoid the deterministic state. however they use an extract hardware resource
as memory for storing the outputs and use Hamming weight to calculate the
probability bits histories.

5 Rundom Number Generator:Experiments Analysis

5.1 Statistic Test

National Institute of Standrs and technologies or NIST is based on hypothesis
testing and includes a 15 batteries of mathematical and physical properties tests
for RNG. It was developed to test the randomness of (arbitrary long) binary
sequences produced by either HW/SW based cryptographic random or pseudo
random bit generators with a fixed input parameters as sequence length of (103 <
N < 107) and (M < 55) of binary sequences (sample size). For each N sequence
produced, the NIST determine by prbability computed by P − value (level of
test) of all different type of non-randomness exist, where the P − value must be
more than a significance level α[0.0001, 0.01] to classify it as a good RNG and
equal to 1 to have perfect randomness. Practically, the NIST test evaluate in first
the range of acceptable proportions of binary sequences passing the statistical
test, then in second it evaluate the uniformity of the test sequence and computing
on the basis of x2 test to the P − value obtained.
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TestU01 is now the most complete and difficult batterie of test of RNG. it
was developed by Pierre L’Ecuyer and was implemented in the ANSI C languages
with more than 516 tests resumed in 7 big batteries (P − value[0.001, 0.999]).
This new Battery of tests covers divers classical tests of the other batteries with
new algorithm performance and cryptographic tests. Six predefined batteries of
tests are already included, where the last batterie FIPS is the recall for NIST
tests. The first three batterie (319 tests) are for sequences of random numbers
SmallCrush, Crush and BigCrush, and the three others ( 181 tests) are for
bit sequences Rabbit, Alphabit and Pseudo-DieHARD designed to test a
finite sequence contained in a random bits.

The other test batteries are the Diehard, it’s include 18 test of Randomness
and was developed by George Marsaglia. It was supposed to give a better way
of analysis in comparison to original FIPS (16 tests) statistical tests. However
and unlike NIST, the P − value have to belong to some fixed chosen interval
[0 +α, 1−α] with a level of signification α of 5% for example. Where the ENT
battery tests was developed to sequences of bytes stored in files and reports the
results of those tests as Entropy and x2 tests.

The results of this survey presented by the authors, show some different level
of what it concerned testing statistic of the RNG implementation from theories
to practical results. Where the tests standard evaluate and updated to covert
more the characteristic of the RNG starting by the simple to a complex and hard
batteries of test. We can analysis the result by two category that it seen more
stable and trust tests as the NIST and TESTU01, where the other batteries are
even for old tests or they are included in those two batteries.

The PRNG analysis table show that not all papers has pass the NIST test,
where Chaotic PRNG are th most success implementation of FPGA using differ-
ent meothods. However, all work that use FPGA opetimised resourcec as LUT
or acuumulator can pass the test where others not. give a details about this
section of tests, where there is some difficult to say it pass it or now specially
the coverege of tests.

RNG DieHard FIPS NIST TestU01 AIS

LF[4,6] CHO[7] LF[1∗,3,5] LF[4∗,6∗,7∗,8∗]
PRNG MT[1,3,8,7] CA[5-9] MT[1∗,3∗,8∗,6∗∗]

CA[2,3,5,8] CHO[1,3,4,6,7,8]

TRNG IRO[7,8] PLL[4] PLL[1,2,5] IRO[7∗∗] STR[10]
STR[10] STR[10,12] IRO[6,8] MTS[13]

MTS[13] STR[10,12]
MTS[14,15]

Cryptography Secure
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5.2 Hardware Implementation
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16. Viktor Fischer and Miloš Drutarovskỳ. True random number generator embedded
in reconfigurable hardware. In Cryptographic Hardware and Embedded Systems-
CHES 2002, pages 415–430. Springer, 2003.

17. Victor R Gonzalez-Diaz, Fabio Pareschi, Gianluca Setti, and Franco Maloberti. A
pseudorandom number generator based on time-variant recursion of accumulators.
Circuits and Systems II: Express Briefs, IEEE Transactions on, 58(9):580–584,
2011.

18. Sheng-Uei Guan and Syn Kiat Tan. Pseudorandom number generator–the self
programmable cellular automata. In Knowledge-Based Intelligent Information and
Engineering Systems, pages 1230–1235. Springer, 2003.

19. NagaDeepa Hariprasad et al. Fpga implementation of a cryptography technology
using pseudo random number generator. In International Journal of Engineering
Research and Technology, volume 2. ESRSA Publications, 2013.



14 Authors Suppressed Due to Excessive Length

20. Dogaru Ioana and Dogaru Radu. Fpga implementation and evaluation of two
cryptographically secure hybrid cellular automata. In Communications (COMM),
2014 10th International Conference on, pages 1–4. IEEE, 2014.

21. Minsu Kang. Fpga implementation of gaussian-distributed pseudo-random num-
ber generator. In 6th International Conference on Digital Content, Multimedia
Technology and its Applications, pages 11–13, 2010.

22. Raj S Katti and Sudarshan K Srinivasan. Efficient hardware implementation of a
new pseudo-random bit sequence generator. In Circuits and Systems, 2009. ISCAS
2009. IEEE International Symposium on, pages 1393–1396. IEEE, 2009.

23. Cristian Klein, Octavian Cret, and Alin Suciu. Design and implementation of a
high quality and high throughput trng in fpga. arXiv preprint arXiv:0906.4762,
2009.

24. Paul Kohlbrenner and Kris Gaj. An embedded true random number generator for
fpgas. In Proceedings of the 2004 ACM/SIGDA 12th international symposium on
Field programmable gate arrays, pages 71–78. ACM, 2004.

25. Leonidas Kotoulas, Demetrios Tsarouchis, Georgios Ch Sirakoulis, and Ioannis
Andreadis. 1-d cellular automaton for pseudorandom number generation and its
reconfigurable hardware implementation. In Circuits and Systems, 2006. ISCAS
2006. Proceedings. 2006 IEEE International Symposium on, pages 4–pp. IEEE,
2006.

26. Donggeon Lee, Hwajeong Seo, and Howon Kim. Metastability-based feedback
method for enhancing fpga-based trng. International Journal of Multimedia &
Ubiquitous Engineering, 9(3), 2014.

27. Yuan Li, Jiang Jiang, Hanqiang Cheng, Minxuan Zhang, and Shaojun Wei. An
efficient hardware random number generator based on the mt method. In Computer
and Information Technology (CIT), 2012 IEEE 12th International Conference on,
pages 1011–1015. IEEE, 2012.

28. Mehrdad Majzoobi, Farinaz Koushanfar, and Srinivas Devadas. Fpga-based true
random number generation using circuit metastability with adaptive feedback con-
trol. In Cryptographic Hardware and Embedded Systems–CHES 2011, pages 17–32.
Springer, 2011.

29. Abhinav S Mansingka, Mohamed L Barakat, M Affan Zidan, Ahmed G Rad-
wan, and Khaled N Salama. Fibonacci-based hardware post-processing for non-
autonomous signum hyperchaotic system. In IT Convergence and Security (IC-
ITCS), 2013 International Conference on, pages 1–4. IEEE, 2013.

30. Yaobin Mao, Liu Cao, and Wenbo Liu. Design and fpga implementation of a
pseudo-random bit sequence generator using spatiotemporal chaos. In Commu-
nications, Circuits and Systems Proceedings, 2006 International Conference on,
volume 3, pages 2114–2118. IEEE, 2006.

31. Lahcene Merah, Adda ALI-PACHA, and Naima HADJ SAID. Coupling two chaotic
systems in order to increasing the security of a communication system-study and
real time fpga implementation.

32. Pedro Peris-Lopez, Enrique San Millan, Jan CA van der Lubbe, and Luis A En-
trena. Cryptographically secure pseudo-random bit generator for rfid tags. In
Internet Technology and Secured Transactions (ICITST), 2010 International Con-
ference for, pages 1–6. IEEE, 2010.

33. Lakshman Raut and David HK Hoe. Stream cipher design using cellular automata
implemented on fpgas. In System Theory (SSST), 2013 45th Southeastern Sympo-
sium on, pages 146–149. IEEE, 2013.



Survey on Hardware Implementation of Random Number Generators 15

34. Khushboo Sewak, Praveena Rajput, and Amit Kumar Panda. Fpga implemen-
tation of 16 bit bbs and lfsr pn sequence generator: A comparative study. In
Electrical, Electronics and Computer Science (SCEECS), 2012 IEEE Students’
Conference on, pages 1–3. IEEE, 2012.
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