1 % This is LLNCS.DEM the demonstration file of
\r
2 % the LaTeX macro package from Springer-Verlag
\r
3 % for Lecture Notes in Computer Science,
\r
4 % version 2.4 for LaTeX2e as of 16. April 2010
\r
6 \documentclass{llncs}
\r
8 \usepackage{makeidx} % allows for indexgeneration
\r
12 \frontmatter % for the preliminaries
\r
14 \pagestyle{headings} % switches on printing of running heads
\r
15 \addtocmark{Hamiltonian Mechanics} % additional mark in the TOC
\r
19 This textbook is intended for use by students of physics, physical
\r
20 chemistry, and theoretical chemistry. The reader is presumed to have a
\r
21 basic knowledge of atomic and quantum physics at the level provided, for
\r
22 example, by the first few chapters in our book {\it The Physics of Atoms
\r
23 and Quanta}. The student of physics will find here material which should
\r
24 be included in the basic education of every physicist. This book should
\r
25 furthermore allow students to acquire an appreciation of the breadth and
\r
26 variety within the field of molecular physics and its future as a
\r
27 fascinating area of research.
\r
29 For the student of chemistry, the concepts introduced in this book will
\r
30 provide a theoretical framework for that entire field of study. With the
\r
31 help of these concepts, it is at least in principle possible to reduce
\r
32 the enormous body of empirical chemical knowledge to a few basic
\r
33 principles: those of quantum mechanics. In addition, modern physical
\r
34 methods whose fundamentals are introduced here are becoming increasingly
\r
35 important in chemistry and now represent indispensable tools for the
\r
36 chemist. As examples, we might mention the structural analysis of
\r
37 complex organic compounds, spectroscopic investigation of very rapid
\r
38 reaction processes or, as a practical application, the remote detection
\r
39 of pollutants in the air.
\r
42 \begin{flushright}\noindent
\r
43 April 1995\hfill Walter Olthoff\\
\r
48 \chapter*{Organization}
\r
49 ECOOP'95 is organized by the department of Computer Science, Univeristy
\r
50 of \AA rhus and AITO (association Internationa pour les Technologie
\r
51 Object) in cooperation with ACM/SIGPLAN.
\r
53 \section*{Executive Commitee}
\r
54 \begin{tabular}{@{}p{5cm}@{}p{7.2cm}@{}}
\r
55 Conference Chair:&Ole Lehrmann Madsen (\AA rhus University, DK)\\
\r
56 Program Chair: &Walter Olthoff (DFKI GmbH, Germany)\\
\r
57 Organizing Chair:&J\o rgen Lindskov Knudsen (\AA rhus University, DK)\\
\r
58 Tutorials:&Birger M\o ller-Pedersen\hfil\break
\r
59 (Norwegian Computing Center, Norway)\\
\r
60 Workshops:&Eric Jul (University of Kopenhagen, Denmark)\\
\r
61 Panels:&Boris Magnusson (Lund University, Sweden)\\
\r
62 Exhibition:&Elmer Sandvad (\AA rhus University, DK)\\
\r
63 Demonstrations:&Kurt N\o rdmark (\AA rhus University, DK)
\r
66 \section*{Program Commitee}
\r
67 \begin{tabular}{@{}p{5cm}@{}p{7.2cm}@{}}
\r
68 Conference Chair:&Ole Lehrmann Madsen (\AA rhus University, DK)\\
\r
69 Program Chair: &Walter Olthoff (DFKI GmbH, Germany)\\
\r
70 Organizing Chair:&J\o rgen Lindskov Knudsen (\AA rhus University, DK)\\
\r
71 Tutorials:&Birger M\o ller-Pedersen\hfil\break
\r
72 (Norwegian Computing Center, Norway)\\
\r
73 Workshops:&Eric Jul (University of Kopenhagen, Denmark)\\
\r
74 Panels:&Boris Magnusson (Lund University, Sweden)\\
\r
75 Exhibition:&Elmer Sandvad (\AA rhus University, DK)\\
\r
76 Demonstrations:&Kurt N\o rdmark (\AA rhus University, DK)
\r
79 \begin{multicols}{3}[\section*{Referees}]
\r
158 M.~Zimmer\end{multicols}
\r
160 \section*{Sponsoring Institutions}
\r
162 Bernauer-Budiman Inc., Reading, Mass.\\
\r
163 The Hofmann-International Company, San Louis Obispo, Cal.\\
\r
164 Kramer Industries, Heidelberg, Germany
\r
168 \mainmatter % start of the contributions
\r
170 \title{Hamiltonian Mechanics unter besonderer Ber\"ucksichtigung der
\r
171 h\"ohreren Lehranstalten}
\r
173 \titlerunning{Hamiltonian Mechanics} % abbreviated title (for running head)
\r
174 % also used for the TOC unless
\r
175 % \toctitle is used
\r
177 \author{Ivar Ekeland\inst{1} \and Roger Temam\inst{2}
\r
178 Jeffrey Dean \and David Grove \and Craig Chambers \and Kim~B.~Bruce \and
\r
181 \authorrunning{Ivar Ekeland et al.} % abbreviated author list (for running head)
\r
183 %%%% list of authors for the TOC (use if author list has to be modified)
\r
184 \tocauthor{Ivar Ekeland, Roger Temam, Jeffrey Dean, David Grove,
\r
185 Craig Chambers, Kim B. Bruce, and Elisa Bertino}
\r
187 \institute{Princeton University, Princeton NJ 08544, USA,\\
\r
188 \email{I.Ekeland@princeton.edu},\\ WWW home page:
\r
189 \texttt{http://users/\homedir iekeland/web/welcome.html}
\r
191 Universit\'{e} de Paris-Sud,
\r
192 Laboratoire d'Analyse Num\'{e}rique, B\^{a}timent 425,\\
\r
193 F-91405 Orsay Cedex, France}
\r
195 \maketitle % typeset the title of the contribution
\r
198 The abstract should summarize the contents of the paper
\r
199 using at least 70 and at most 150 words. It will be set in 9-point
\r
200 font size and be inset 1.0 cm from the right and left margins.
\r
201 There will be two blank lines before and after the Abstract. \dots
\r
202 \keywords{computational geometry, graph theory, Hamilton cycles}
\r
205 \section{Fixed-Period Problems: The Sublinear Case}
\r
207 With this chapter, the preliminaries are over, and we begin the search
\r
208 for periodic solutions to Hamiltonian systems. All this will be done in
\r
209 the convex case; that is, we shall study the boundary-value problem
\r
211 \dot{x}&=&JH' (t,x)\\
\r
214 with $H(t,\cdot)$ a convex function of $x$, going to $+\infty$ when
\r
215 $\left\|x\right\| \to \infty$.
\r
218 \subsection{Autonomous Systems}
\r
220 In this section, we will consider the case when the Hamiltonian $H(x)$
\r
221 is autonomous. For the sake of simplicity, we shall also assume that it
\r
224 We shall first consider the question of nontriviality, within the
\r
225 general framework of
\r
226 $\left(A_{\infty},B_{\infty}\right)$-subquadratic Hamiltonians. In
\r
227 the second subsection, we shall look into the special case when $H$ is
\r
228 $\left(0,b_{\infty}\right)$-subquadratic,
\r
229 and we shall try to derive additional information.
\r
231 \subsubsection{The General Case: Nontriviality.}
\r
233 We assume that $H$ is
\r
234 $\left(A_{\infty},B_{\infty}\right)$-sub\-qua\-dra\-tic at infinity,
\r
235 for some constant symmetric matrices $A_{\infty}$ and $B_{\infty}$,
\r
236 with $B_{\infty}-A_{\infty}$ positive definite. Set:
\r
238 \gamma :&=&{\rm smallest\ eigenvalue\ of}\ \ B_{\infty} - A_{\infty} \\
\r
239 \lambda : &=& {\rm largest\ negative\ eigenvalue\ of}\ \
\r
240 J \frac{d}{dt} +A_{\infty}\ .
\r
243 Theorem~\ref{ghou:pre} tells us that if $\lambda +\gamma < 0$, the
\r
244 boundary-value problem:
\r
247 \dot{x}&=&JH' (x)\\
\r
251 has at least one solution
\r
252 $\overline{x}$, which is found by minimizing the dual
\r
255 \psi (u) = \int_{o}^{T} \left[\frac{1}{2}
\r
256 \left(\Lambda_{o}^{-1} u,u\right) + N^{\ast} (-u)\right] dt
\r
258 on the range of $\Lambda$, which is a subspace $R (\Lambda)_{L}^{2}$
\r
259 with finite codimension. Here
\r
261 N(x) := H(x) - \frac{1}{2} \left(A_{\infty} x,x\right)
\r
263 is a convex function, and
\r
265 N(x) \le \frac{1}{2}
\r
266 \left(\left(B_{\infty} - A_{\infty}\right) x,x\right)
\r
267 + c\ \ \ \forall x\ .
\r
271 \begin{proposition}
\r
272 Assume $H'(0)=0$ and $ H(0)=0$. Set:
\r
274 \delta := \liminf_{x\to 0} 2 N (x) \left\|x\right\|^{-2}\ .
\r
278 If $\gamma < - \lambda < \delta$,
\r
279 the solution $\overline{u}$ is non-zero:
\r
281 \overline{x} (t) \ne 0\ \ \ \forall t\ .
\r
286 Condition (\ref{eq:one}) means that, for every
\r
287 $\delta ' > \delta$, there is some $\varepsilon > 0$ such that
\r
289 \left\|x\right\| \le \varepsilon \Rightarrow N (x) \le
\r
290 \frac{\delta '}{2} \left\|x\right\|^{2}\ .
\r
293 It is an exercise in convex analysis, into which we shall not go, to
\r
294 show that this implies that there is an $\eta > 0$ such that
\r
296 f\left\|x\right\| \le \eta
\r
297 \Rightarrow N^{\ast} (y) \le \frac{1}{2\delta '}
\r
298 \left\|y\right\|^{2}\ .
\r
304 \caption{This is the caption of the figure displaying a white eagle and
\r
305 a white horse on a snow field}
\r
308 Since $u_{1}$ is a smooth function, we will have
\r
309 $\left\|hu_{1}\right\|_\infty \le \eta$
\r
310 for $h$ small enough, and inequality (\ref{eq:two}) will hold,
\r
313 \psi (hu_{1}) \le \frac{h^{2}}{2}
\r
314 \frac{1}{\lambda} \left\|u_{1} \right\|_{2}^{2} + \frac{h^{2}}{2}
\r
315 \frac{1}{\delta '} \left\|u_{1}\right\|^{2}\ .
\r
318 If we choose $\delta '$ close enough to $\delta$, the quantity
\r
319 $\left(\frac{1}{\lambda} + \frac{1}{\delta '}\right)$
\r
320 will be negative, and we end up with
\r
322 \psi (hu_{1}) < 0\ \ \ \ \ {\rm for}\ \ h\ne 0\ \ {\rm small}\ .
\r
325 On the other hand, we check directly that $\psi (0) = 0$. This shows
\r
326 that 0 cannot be a minimizer of $\psi$, not even a local one.
\r
327 So $\overline{u} \ne 0$ and
\r
328 $\overline{u} \ne \Lambda_{o}^{-1} (0) = 0$. \qed
\r
332 Assume $H$ is $C^{2}$ and
\r
333 $\left(a_{\infty},b_{\infty}\right)$-subquadratic at infinity. Let
\r
334 $\xi_{1},\allowbreak\dots,\allowbreak\xi_{N}$ be the
\r
335 equilibria, that is, the solutions of $H' (\xi ) = 0$.
\r
336 Denote by $\omega_{k}$
\r
337 the smallest eigenvalue of $H'' \left(\xi_{k}\right)$, and set:
\r
339 \omega : = {\rm Min\,} \left\{\omega_{1},\dots,\omega_{k}\right\}\ .
\r
343 \frac{T}{2\pi} b_{\infty} <
\r
344 - E \left[- \frac{T}{2\pi}a_{\infty}\right] <
\r
345 \frac{T}{2\pi}\omega
\r
348 then minimization of $\psi$ yields a non-constant $T$-periodic solution
\r
353 We recall once more that by the integer part $E [\alpha ]$ of
\r
354 $\alpha \in \bbbr$, we mean the $a\in \bbbz$
\r
355 such that $a< \alpha \le a+1$. For instance,
\r
356 if we take $a_{\infty} = 0$, Corollary 2 tells
\r
357 us that $\overline{x}$ exists and is
\r
358 non-constant provided that:
\r
361 \frac{T}{2\pi} b_{\infty} < 1 < \frac{T}{2\pi}
\r
365 T\in \left(\frac{2\pi}{\omega},\frac{2\pi}{b_{\infty}}\right)\ .
\r
371 The spectrum of $\Lambda$ is $\frac{2\pi}{T} \bbbz +a_{\infty}$. The
\r
372 largest negative eigenvalue $\lambda$ is given by
\r
373 $\frac{2\pi}{T}k_{o} +a_{\infty}$,
\r
376 \frac{2\pi}{T}k_{o} + a_{\infty} < 0
\r
377 \le \frac{2\pi}{T} (k_{o} +1) + a_{\infty}\ .
\r
381 k_{o} = E \left[- \frac{T}{2\pi} a_{\infty}\right] \ .
\r
384 The condition $\gamma < -\lambda < \delta$ now becomes:
\r
386 b_{\infty} - a_{\infty} <
\r
387 - \frac{2\pi}{T} k_{o} -a_{\infty} < \omega -a_{\infty}
\r
389 which is precisely condition (\ref{eq:three}).\qed
\r
394 Assume that $H$ is $C^{2}$ on $\bbbr^{2n} \setminus \{ 0\}$ and
\r
395 that $H'' (x)$ is non-de\-gen\-er\-ate for any $x\ne 0$. Then any local
\r
396 minimizer $\widetilde{x}$ of $\psi$ has minimal period $T$.
\r
400 We know that $\widetilde{x}$, or
\r
401 $\widetilde{x} + \xi$ for some constant $\xi
\r
402 \in \bbbr^{2n}$, is a $T$-periodic solution of the Hamiltonian system:
\r
404 \dot{x} = JH' (x)\ .
\r
407 There is no loss of generality in taking $\xi = 0$. So
\r
408 $\psi (x) \ge \psi (\widetilde{x} )$
\r
409 for all $\widetilde{x}$ in some neighbourhood of $x$ in
\r
410 $W^{1,2} \left(\bbbr / T\bbbz ; \bbbr^{2n}\right)$.
\r
412 But this index is precisely the index
\r
413 $i_{T} (\widetilde{x} )$ of the $T$-periodic
\r
414 solution $\widetilde{x}$ over the interval
\r
415 $(0,T)$, as defined in Sect.~2.6. So
\r
417 i_{T} (\widetilde{x} ) = 0\ .
\r
421 Now if $\widetilde{x}$ has a lower period, $T/k$ say,
\r
422 we would have, by Corollary 31:
\r
424 i_{T} (\widetilde{x} ) =
\r
425 i_{kT/k}(\widetilde{x} ) \ge
\r
426 ki_{T/k} (\widetilde{x} ) + k-1 \ge k-1 \ge 1\ .
\r
429 This would contradict (\ref{eq:five}), and thus cannot happen.\qed
\r
432 \paragraph{Notes and Comments.}
\r
433 The results in this section are a
\r
434 refined version of \cite{clar:eke};
\r
435 the minimality result of Proposition
\r
436 14 was the first of its kind.
\r
438 To understand the nontriviality conditions, such as the one in formula
\r
439 (\ref{eq:four}), one may think of a one-parameter family
\r
440 $x_{T}$, $T\in \left(2\pi\omega^{-1}, 2\pi b_{\infty}^{-1}\right)$
\r
441 of periodic solutions, $x_{T} (0) = x_{T} (T)$,
\r
442 with $x_{T}$ going away to infinity when $T\to 2\pi \omega^{-1}$,
\r
443 which is the period of the linearized system at 0.
\r
446 \caption{This is the example table taken out of {\it The
\r
447 \TeX{}book,} p.\,246}
\r
449 \begin{tabular}{r@{\quad}rl}
\r
451 \multicolumn{1}{l}{\rule{0pt}{12pt}
\r
452 Year}&\multicolumn{2}{l}{World population}\\[2pt]
\r
453 \hline\rule{0pt}{12pt}
\r
454 8000 B.C. & 5,000,000& \\
\r
455 50 A.D. & 200,000,000& \\
\r
456 1650 A.D. & 500,000,000& \\
\r
457 1945 A.D. & 2,300,000,000& \\
\r
458 1980 A.D. & 4,400,000,000& \\[2pt]
\r
464 \begin{theorem} [Ghoussoub-Preiss]\label{ghou:pre}
\r
466 $(0,\varepsilon )$-subquadratic at
\r
467 infinity for all $\varepsilon > 0$, and $T$-periodic in $t$
\r
469 H (t,\cdot )\ \ \ \ \ {\rm is\ convex}\ \ \forall t
\r
472 H (\cdot ,x)\ \ \ \ \ {\rm is}\ \ T{\rm -periodic}\ \ \forall x
\r
475 H (t,x)\ge n\left(\left\|x\right\|\right)\ \ \ \ \
\r
476 {\rm with}\ \ n (s)s^{-1}\to \infty\ \ {\rm as}\ \ s\to \infty
\r
479 \forall \varepsilon > 0\ ,\ \ \ \exists c\ :\
\r
480 H(t,x) \le \frac{\varepsilon}{2}\left\|x\right\|^{2} + c\ .
\r
483 Assume also that $H$ is $C^{2}$, and $H'' (t,x)$ is positive definite
\r
484 everywhere. Then there is a sequence $x_{k}$, $k\in \bbbn$, of
\r
485 $kT$-periodic solutions of the system
\r
487 \dot{x} = JH' (t,x)
\r
489 such that, for every $k\in \bbbn$, there is some $p_{o}\in\bbbn$ with:
\r
491 p\ge p_{o}\Rightarrow x_{pk} \ne x_{k}\ .
\r
496 \begin{example} [{{\rm External forcing}}]
\r
497 Consider the system:
\r
499 \dot{x} = JH' (x) + f(t)
\r
501 where the Hamiltonian $H$ is
\r
502 $\left(0,b_{\infty}\right)$-subquadratic, and the
\r
503 forcing term is a distribution on the circle:
\r
505 f = \frac{d}{dt} F + f_{o}\ \ \ \ \
\r
506 {\rm with}\ \ F\in L^{2} \left(\bbbr / T\bbbz; \bbbr^{2n}\right)\ ,
\r
508 where $f_{o} : = T^{-1}\int_{o}^{T} f (t) dt$. For instance,
\r
510 f (t) = \sum_{k\in \bbbn} \delta_{k} \xi\ ,
\r
512 where $\delta_{k}$ is the Dirac mass at $t= k$ and
\r
513 $\xi \in \bbbr^{2n}$ is a
\r
514 constant, fits the prescription. This means that the system
\r
515 $\dot{x} = JH' (x)$ is being excited by a
\r
516 series of identical shocks at interval $T$.
\r
520 Let $A_{\infty} (t)$ and $B_{\infty} (t)$ be symmetric
\r
521 operators in $\bbbr^{2n}$, depending continuously on
\r
522 $t\in [0,T]$, such that
\r
523 $A_{\infty} (t) \le B_{\infty} (t)$ for all $t$.
\r
525 A Borelian function
\r
526 $H: [0,T]\times \bbbr^{2n} \to \bbbr$
\r
528 $\left(A_{\infty} ,B_{\infty}\right)$-{\it subquadratic at infinity}
\r
529 if there exists a function $N(t,x)$ such that:
\r
531 H (t,x) = \frac{1}{2} \left(A_{\infty} (t) x,x\right) + N(t,x)
\r
534 \forall t\ ,\ \ \ N(t,x)\ \ \ \ \
\r
535 {\rm is\ convex\ with\ respect\ to}\ \ x
\r
538 N(t,x) \ge n\left(\left\|x\right\|\right)\ \ \ \ \
\r
539 {\rm with}\ \ n(s)s^{-1}\to +\infty\ \ {\rm as}\ \ s\to +\infty
\r
542 \exists c\in \bbbr\ :\ \ \ H (t,x) \le
\r
543 \frac{1}{2} \left(B_{\infty} (t) x,x\right) + c\ \ \ \forall x\ .
\r
546 If $A_{\infty} (t) = a_{\infty} I$ and
\r
547 $B_{\infty} (t) = b_{\infty} I$, with
\r
548 $a_{\infty} \le b_{\infty} \in \bbbr$,
\r
549 we shall say that $H$ is
\r
550 $\left(a_{\infty},b_{\infty}\right)$-subquadratic
\r
551 at infinity. As an example, the function
\r
552 $\left\|x\right\|^{\alpha}$, with
\r
553 $1\le \alpha < 2$, is $(0,\varepsilon )$-subquadratic at infinity
\r
554 for every $\varepsilon > 0$. Similarly, the Hamiltonian
\r
556 H (t,x) = \frac{1}{2} k \left\|k\right\|^{2} +\left\|x\right\|^{\alpha}
\r
558 is $(k,k+\varepsilon )$-subquadratic for every $\varepsilon > 0$.
\r
559 Note that, if $k<0$, it is not convex.
\r
563 \paragraph{Notes and Comments.}
\r
564 The first results on subharmonics were
\r
565 obtained by Rabinowitz in \cite{rab}, who showed the existence of
\r
566 infinitely many subharmonics both in the subquadratic and superquadratic
\r
567 case, with suitable growth conditions on $H'$. Again the duality
\r
568 approach enabled Clarke and Ekeland in \cite{clar:eke:2} to treat the
\r
569 same problem in the convex-subquadratic case, with growth conditions on
\r
572 Recently, Michalek and Tarantello (see \cite{mich:tar} and \cite{tar})
\r
573 have obtained lower bound on the number of subharmonics of period $kT$,
\r
574 based on symmetry considerations and on pinching estimates, as in
\r
575 Sect.~5.2 of this article.
\r
578 % ---- Bibliography ----
\r
580 \begin{thebibliography}{5}
\r
582 \bibitem {clar:eke}
\r
583 Clarke, F., Ekeland, I.:
\r
584 Nonlinear oscillations and
\r
585 boundary-value problems for Hamiltonian systems.
\r
586 Arch. Rat. Mech. Anal. 78, 315--333 (1982)
\r
588 \bibitem {clar:eke:2}
\r
589 Clarke, F., Ekeland, I.:
\r
590 Solutions p\'{e}riodiques, du
\r
591 p\'{e}riode donn\'{e}e, des \'{e}quations hamiltoniennes.
\r
592 Note CRAS Paris 287, 1013--1015 (1978)
\r
594 \bibitem {mich:tar}
\r
595 Michalek, R., Tarantello, G.:
\r
596 Subharmonic solutions with prescribed minimal
\r
597 period for nonautonomous Hamiltonian systems.
\r
598 J. Diff. Eq. 72, 28--55 (1988)
\r
602 Subharmonic solutions for Hamiltonian
\r
603 systems via a $\bbbz_{p}$ pseudoindex theory.
\r
604 Annali di Matematica Pura (to appear)
\r
608 On subharmonic solutions of a Hamiltonian system.
\r
609 Comm. Pure Appl. Math. 33, 609--633 (1980)
\r
611 \end{thebibliography}
\r
614 % second contribution with nearly identical text,
\r
615 % slightly changed contribution head (all entries
\r
616 % appear as defaults), and modified bibliography
\r
618 \title{Hamiltonian Mechanics2}
\r
620 \author{Ivar Ekeland\inst{1} \and Roger Temam\inst{2}}
\r
622 \institute{Princeton University, Princeton NJ 08544, USA
\r
624 Universit\'{e} de Paris-Sud,
\r
625 Laboratoire d'Analyse Num\'{e}rique, B\^{a}timent 425,\\
\r
626 F-91405 Orsay Cedex, France}
\r
630 % Modify the bibliography environment to call for the author-year
\r
631 % system. This is done normally with the citeauthoryear option
\r
632 % for a particular contribution.
\r
634 \renewenvironment{thebibliography}[1]
\r
635 {\section*{\refname}
\r
638 {\settowidth\labelwidth{}%
\r
639 \leftmargin\parindent
\r
640 \itemindent=-\parindent
\r
643 \advance\leftmargin\bibindent
\r
644 \itemindent -\bibindent
\r
645 \listparindent \itemindent
\r
648 \usecounter{enumiv}%
\r
649 \let\p@enumiv\@empty
\r
650 \renewcommand\theenumiv{}}%
\r
652 \renewcommand\newblock{\par}%
\r
654 \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
\r
656 \sloppy\clubpenalty4000\widowpenalty4000%
\r
659 {\@latex@warning{Empty `thebibliography' environment}}%
\r
662 \def\@lbibitem[#1]#2{\item[]\if@filesw
\r
663 {\def\protect##1{\string ##1\space}\immediate
\r
664 \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
\r
668 The abstract should summarize the contents of the paper
\r
669 using at least 70 and at most 150 words. It will be set in 9-point
\r
670 font size and be inset 1.0 cm from the right and left margins.
\r
671 There will be two blank lines before and after the Abstract. \dots
\r
672 \keywords{graph transformations, convex geometry, lattice computations,
\r
673 convex polygons, triangulations, discrete geometry}
\r
676 \section{Fixed-Period Problems: The Sublinear Case}
\r
678 With this chapter, the preliminaries are over, and we begin the search
\r
679 for periodic solutions to Hamiltonian systems. All this will be done in
\r
680 the convex case; that is, we shall study the boundary-value problem
\r
682 \dot{x}&=&JH' (t,x)\\
\r
685 with $H(t,\cdot)$ a convex function of $x$, going to $+\infty$ when
\r
686 $\left\|x\right\| \to \infty$.
\r
689 \subsection{Autonomous Systems}
\r
691 In this section, we will consider the case when the Hamiltonian $H(x)$
\r
692 is autonomous. For the sake of simplicity, we shall also assume that it
\r
695 We shall first consider the question of nontriviality, within the
\r
696 general framework of
\r
697 $\left(A_{\infty},B_{\infty}\right)$-subquadratic Hamiltonians. In
\r
698 the second subsection, we shall look into the special case when $H$ is
\r
699 $\left(0,b_{\infty}\right)$-subquadratic,
\r
700 and we shall try to derive additional information.
\r
702 \subsubsection{The General Case: Nontriviality.}
\r
704 We assume that $H$ is
\r
705 $\left(A_{\infty},B_{\infty}\right)$-sub\-qua\-dra\-tic at infinity,
\r
706 for some constant symmetric matrices $A_{\infty}$ and $B_{\infty}$,
\r
707 with $B_{\infty}-A_{\infty}$ positive definite. Set:
\r
709 \gamma :&=&{\rm smallest\ eigenvalue\ of}\ \ B_{\infty} - A_{\infty} \\
\r
710 \lambda : &=& {\rm largest\ negative\ eigenvalue\ of}\ \
\r
711 J \frac{d}{dt} +A_{\infty}\ .
\r
714 Theorem 21 tells us that if $\lambda +\gamma < 0$, the boundary-value
\r
718 \dot{x}&=&JH' (x)\\
\r
722 has at least one solution
\r
723 $\overline{x}$, which is found by minimizing the dual
\r
726 \psi (u) = \int_{o}^{T} \left[\frac{1}{2}
\r
727 \left(\Lambda_{o}^{-1} u,u\right) + N^{\ast} (-u)\right] dt
\r
729 on the range of $\Lambda$, which is a subspace $R (\Lambda)_{L}^{2}$
\r
730 with finite codimension. Here
\r
732 N(x) := H(x) - \frac{1}{2} \left(A_{\infty} x,x\right)
\r
734 is a convex function, and
\r
736 N(x) \le \frac{1}{2}
\r
737 \left(\left(B_{\infty} - A_{\infty}\right) x,x\right)
\r
738 + c\ \ \ \forall x\ .
\r
742 \begin{proposition}
\r
743 Assume $H'(0)=0$ and $ H(0)=0$. Set:
\r
745 \delta := \liminf_{x\to 0} 2 N (x) \left\|x\right\|^{-2}\ .
\r
749 If $\gamma < - \lambda < \delta$,
\r
750 the solution $\overline{u}$ is non-zero:
\r
752 \overline{x} (t) \ne 0\ \ \ \forall t\ .
\r
757 Condition (\ref{2eq:one}) means that, for every
\r
758 $\delta ' > \delta$, there is some $\varepsilon > 0$ such that
\r
760 \left\|x\right\| \le \varepsilon \Rightarrow N (x) \le
\r
761 \frac{\delta '}{2} \left\|x\right\|^{2}\ .
\r
764 It is an exercise in convex analysis, into which we shall not go, to
\r
765 show that this implies that there is an $\eta > 0$ such that
\r
767 f\left\|x\right\| \le \eta
\r
768 \Rightarrow N^{\ast} (y) \le \frac{1}{2\delta '}
\r
769 \left\|y\right\|^{2}\ .
\r
775 \caption{This is the caption of the figure displaying a white eagle and
\r
776 a white horse on a snow field}
\r
779 Since $u_{1}$ is a smooth function, we will have
\r
780 $\left\|hu_{1}\right\|_\infty \le \eta$
\r
781 for $h$ small enough, and inequality (\ref{2eq:two}) will hold,
\r
784 \psi (hu_{1}) \le \frac{h^{2}}{2}
\r
785 \frac{1}{\lambda} \left\|u_{1} \right\|_{2}^{2} + \frac{h^{2}}{2}
\r
786 \frac{1}{\delta '} \left\|u_{1}\right\|^{2}\ .
\r
789 If we choose $\delta '$ close enough to $\delta$, the quantity
\r
790 $\left(\frac{1}{\lambda} + \frac{1}{\delta '}\right)$
\r
791 will be negative, and we end up with
\r
793 \psi (hu_{1}) < 0\ \ \ \ \ {\rm for}\ \ h\ne 0\ \ {\rm small}\ .
\r
796 On the other hand, we check directly that $\psi (0) = 0$. This shows
\r
797 that 0 cannot be a minimizer of $\psi$, not even a local one.
\r
798 So $\overline{u} \ne 0$ and
\r
799 $\overline{u} \ne \Lambda_{o}^{-1} (0) = 0$. \qed
\r
803 Assume $H$ is $C^{2}$ and
\r
804 $\left(a_{\infty},b_{\infty}\right)$-subquadratic at infinity. Let
\r
805 $\xi_{1},\allowbreak\dots,\allowbreak\xi_{N}$ be the
\r
806 equilibria, that is, the solutions of $H' (\xi ) = 0$.
\r
807 Denote by $\omega_{k}$
\r
808 the smallest eigenvalue of $H'' \left(\xi_{k}\right)$, and set:
\r
810 \omega : = {\rm Min\,} \left\{\omega_{1},\dots,\omega_{k}\right\}\ .
\r
814 \frac{T}{2\pi} b_{\infty} <
\r
815 - E \left[- \frac{T}{2\pi}a_{\infty}\right] <
\r
816 \frac{T}{2\pi}\omega
\r
819 then minimization of $\psi$ yields a non-constant $T$-periodic solution
\r
824 We recall once more that by the integer part $E [\alpha ]$ of
\r
825 $\alpha \in \bbbr$, we mean the $a\in \bbbz$
\r
826 such that $a< \alpha \le a+1$. For instance,
\r
827 if we take $a_{\infty} = 0$, Corollary 2 tells
\r
828 us that $\overline{x}$ exists and is
\r
829 non-constant provided that:
\r
832 \frac{T}{2\pi} b_{\infty} < 1 < \frac{T}{2\pi}
\r
836 T\in \left(\frac{2\pi}{\omega},\frac{2\pi}{b_{\infty}}\right)\ .
\r
842 The spectrum of $\Lambda$ is $\frac{2\pi}{T} \bbbz +a_{\infty}$. The
\r
843 largest negative eigenvalue $\lambda$ is given by
\r
844 $\frac{2\pi}{T}k_{o} +a_{\infty}$,
\r
847 \frac{2\pi}{T}k_{o} + a_{\infty} < 0
\r
848 \le \frac{2\pi}{T} (k_{o} +1) + a_{\infty}\ .
\r
852 k_{o} = E \left[- \frac{T}{2\pi} a_{\infty}\right] \ .
\r
855 The condition $\gamma < -\lambda < \delta$ now becomes:
\r
857 b_{\infty} - a_{\infty} <
\r
858 - \frac{2\pi}{T} k_{o} -a_{\infty} < \omega -a_{\infty}
\r
860 which is precisely condition (\ref{2eq:three}).\qed
\r
865 Assume that $H$ is $C^{2}$ on $\bbbr^{2n} \setminus \{ 0\}$ and
\r
866 that $H'' (x)$ is non-de\-gen\-er\-ate for any $x\ne 0$. Then any local
\r
867 minimizer $\widetilde{x}$ of $\psi$ has minimal period $T$.
\r
871 We know that $\widetilde{x}$, or
\r
872 $\widetilde{x} + \xi$ for some constant $\xi
\r
873 \in \bbbr^{2n}$, is a $T$-periodic solution of the Hamiltonian system:
\r
875 \dot{x} = JH' (x)\ .
\r
878 There is no loss of generality in taking $\xi = 0$. So
\r
879 $\psi (x) \ge \psi (\widetilde{x} )$
\r
880 for all $\widetilde{x}$ in some neighbourhood of $x$ in
\r
881 $W^{1,2} \left(\bbbr / T\bbbz ; \bbbr^{2n}\right)$.
\r
883 But this index is precisely the index
\r
884 $i_{T} (\widetilde{x} )$ of the $T$-periodic
\r
885 solution $\widetilde{x}$ over the interval
\r
886 $(0,T)$, as defined in Sect.~2.6. So
\r
888 i_{T} (\widetilde{x} ) = 0\ .
\r
892 Now if $\widetilde{x}$ has a lower period, $T/k$ say,
\r
893 we would have, by Corollary 31:
\r
895 i_{T} (\widetilde{x} ) =
\r
896 i_{kT/k}(\widetilde{x} ) \ge
\r
897 ki_{T/k} (\widetilde{x} ) + k-1 \ge k-1 \ge 1\ .
\r
900 This would contradict (\ref{2eq:five}), and thus cannot happen.\qed
\r
903 \paragraph{Notes and Comments.}
\r
904 The results in this section are a
\r
905 refined version of \cite{2clar:eke};
\r
906 the minimality result of Proposition
\r
907 14 was the first of its kind.
\r
909 To understand the nontriviality conditions, such as the one in formula
\r
910 (\ref{2eq:four}), one may think of a one-parameter family
\r
911 $x_{T}$, $T\in \left(2\pi\omega^{-1}, 2\pi b_{\infty}^{-1}\right)$
\r
912 of periodic solutions, $x_{T} (0) = x_{T} (T)$,
\r
913 with $x_{T}$ going away to infinity when $T\to 2\pi \omega^{-1}$,
\r
914 which is the period of the linearized system at 0.
\r
917 \caption{This is the example table taken out of {\it The
\r
918 \TeX{}book,} p.\,246}
\r
920 \begin{tabular}{r@{\quad}rl}
\r
922 \multicolumn{1}{l}{\rule{0pt}{12pt}
\r
923 Year}&\multicolumn{2}{l}{World population}\\[2pt]
\r
924 \hline\rule{0pt}{12pt}
\r
925 8000 B.C. & 5,000,000& \\
\r
926 50 A.D. & 200,000,000& \\
\r
927 1650 A.D. & 500,000,000& \\
\r
928 1945 A.D. & 2,300,000,000& \\
\r
929 1980 A.D. & 4,400,000,000& \\[2pt]
\r
935 \begin{theorem} [Ghoussoub-Preiss]
\r
937 $(0,\varepsilon )$-subquadratic at
\r
938 infinity for all $\varepsilon > 0$, and $T$-periodic in $t$
\r
940 H (t,\cdot )\ \ \ \ \ {\rm is\ convex}\ \ \forall t
\r
943 H (\cdot ,x)\ \ \ \ \ {\rm is}\ \ T{\rm -periodic}\ \ \forall x
\r
946 H (t,x)\ge n\left(\left\|x\right\|\right)\ \ \ \ \
\r
947 {\rm with}\ \ n (s)s^{-1}\to \infty\ \ {\rm as}\ \ s\to \infty
\r
950 \forall \varepsilon > 0\ ,\ \ \ \exists c\ :\
\r
951 H(t,x) \le \frac{\varepsilon}{2}\left\|x\right\|^{2} + c\ .
\r
954 Assume also that $H$ is $C^{2}$, and $H'' (t,x)$ is positive definite
\r
955 everywhere. Then there is a sequence $x_{k}$, $k\in \bbbn$, of
\r
956 $kT$-periodic solutions of the system
\r
958 \dot{x} = JH' (t,x)
\r
960 such that, for every $k\in \bbbn$, there is some $p_{o}\in\bbbn$ with:
\r
962 p\ge p_{o}\Rightarrow x_{pk} \ne x_{k}\ .
\r
967 \begin{example} [{{\rm External forcing}}]
\r
968 Consider the system:
\r
970 \dot{x} = JH' (x) + f(t)
\r
972 where the Hamiltonian $H$ is
\r
973 $\left(0,b_{\infty}\right)$-subquadratic, and the
\r
974 forcing term is a distribution on the circle:
\r
976 f = \frac{d}{dt} F + f_{o}\ \ \ \ \
\r
977 {\rm with}\ \ F\in L^{2} \left(\bbbr / T\bbbz; \bbbr^{2n}\right)\ ,
\r
979 where $f_{o} : = T^{-1}\int_{o}^{T} f (t) dt$. For instance,
\r
981 f (t) = \sum_{k\in \bbbn} \delta_{k} \xi\ ,
\r
983 where $\delta_{k}$ is the Dirac mass at $t= k$ and
\r
984 $\xi \in \bbbr^{2n}$ is a
\r
985 constant, fits the prescription. This means that the system
\r
986 $\dot{x} = JH' (x)$ is being excited by a
\r
987 series of identical shocks at interval $T$.
\r
991 Let $A_{\infty} (t)$ and $B_{\infty} (t)$ be symmetric
\r
992 operators in $\bbbr^{2n}$, depending continuously on
\r
993 $t\in [0,T]$, such that
\r
994 $A_{\infty} (t) \le B_{\infty} (t)$ for all $t$.
\r
996 A Borelian function
\r
997 $H: [0,T]\times \bbbr^{2n} \to \bbbr$
\r
999 $\left(A_{\infty} ,B_{\infty}\right)$-{\it subquadratic at infinity}
\r
1000 if there exists a function $N(t,x)$ such that:
\r
1002 H (t,x) = \frac{1}{2} \left(A_{\infty} (t) x,x\right) + N(t,x)
\r
1005 \forall t\ ,\ \ \ N(t,x)\ \ \ \ \
\r
1006 {\rm is\ convex\ with\ respect\ to}\ \ x
\r
1009 N(t,x) \ge n\left(\left\|x\right\|\right)\ \ \ \ \
\r
1010 {\rm with}\ \ n(s)s^{-1}\to +\infty\ \ {\rm as}\ \ s\to +\infty
\r
1013 \exists c\in \bbbr\ :\ \ \ H (t,x) \le
\r
1014 \frac{1}{2} \left(B_{\infty} (t) x,x\right) + c\ \ \ \forall x\ .
\r
1017 If $A_{\infty} (t) = a_{\infty} I$ and
\r
1018 $B_{\infty} (t) = b_{\infty} I$, with
\r
1019 $a_{\infty} \le b_{\infty} \in \bbbr$,
\r
1020 we shall say that $H$ is
\r
1021 $\left(a_{\infty},b_{\infty}\right)$-subquadratic
\r
1022 at infinity. As an example, the function
\r
1023 $\left\|x\right\|^{\alpha}$, with
\r
1024 $1\le \alpha < 2$, is $(0,\varepsilon )$-subquadratic at infinity
\r
1025 for every $\varepsilon > 0$. Similarly, the Hamiltonian
\r
1027 H (t,x) = \frac{1}{2} k \left\|k\right\|^{2} +\left\|x\right\|^{\alpha}
\r
1029 is $(k,k+\varepsilon )$-subquadratic for every $\varepsilon > 0$.
\r
1030 Note that, if $k<0$, it is not convex.
\r
1034 \paragraph{Notes and Comments.}
\r
1035 The first results on subharmonics were
\r
1036 obtained by Rabinowitz in \cite{2rab}, who showed the existence of
\r
1037 infinitely many subharmonics both in the subquadratic and superquadratic
\r
1038 case, with suitable growth conditions on $H'$. Again the duality
\r
1039 approach enabled Clarke and Ekeland in \cite{2clar:eke:2} to treat the
\r
1040 same problem in the convex-subquadratic case, with growth conditions on
\r
1043 Recently, Michalek and Tarantello (see Michalek, R., Tarantello, G.
\r
1044 \cite{2mich:tar} and Tarantello, G. \cite{2tar}) have obtained lower
\r
1045 bound on the number of subharmonics of period $kT$, based on symmetry
\r
1046 considerations and on pinching estimates, as in Sect.~5.2 of this
\r
1050 % ---- Bibliography ----
\r
1052 \begin{thebibliography}{}
\r
1054 \bibitem[1980]{2clar:eke}
\r
1055 Clarke, F., Ekeland, I.:
\r
1056 Nonlinear oscillations and
\r
1057 boundary-value problems for Hamiltonian systems.
\r
1058 Arch. Rat. Mech. Anal. 78, 315--333 (1982)
\r
1060 \bibitem[1981]{2clar:eke:2}
\r
1061 Clarke, F., Ekeland, I.:
\r
1062 Solutions p\'{e}riodiques, du
\r
1063 p\'{e}riode donn\'{e}e, des \'{e}quations hamiltoniennes.
\r
1064 Note CRAS Paris 287, 1013--1015 (1978)
\r
1066 \bibitem[1982]{2mich:tar}
\r
1067 Michalek, R., Tarantello, G.:
\r
1068 Subharmonic solutions with prescribed minimal
\r
1069 period for nonautonomous Hamiltonian systems.
\r
1070 J. Diff. Eq. 72, 28--55 (1988)
\r
1072 \bibitem[1983]{2tar}
\r
1074 Subharmonic solutions for Hamiltonian
\r
1075 systems via a $\bbbz_{p}$ pseudoindex theory.
\r
1076 Annali di Matematica Pura (to appear)
\r
1078 \bibitem[1985]{2rab}
\r
1080 On subharmonic solutions of a Hamiltonian system.
\r
1081 Comm. Pure Appl. Math. 33, 609--633 (1980)
\r
1083 \end{thebibliography}
\r
1085 \addtocmark[2]{Author Index} % additional numbered TOC entry
\r
1086 \renewcommand{\indexname}{Author Index}
\r
1089 \addtocmark[2]{Subject Index} % additional numbered TOC entry
\r
1090 \markboth{Subject Index}{Subject Index}
\r
1091 \renewcommand{\indexname}{Subject Index}
\r
1092 \input{subjidx.ind}
\r