- obtaining a new fair bit is either $1-\frac{i-1}{n}$ if $h(X)$ is fair,
- or $1-\frac{i-2}{n}$ if $h(X)$ is not fair. It follows that
-$E[W_i]\leq \frac{n}{n-i+2}$. Therefore
-$$E[\ts^\prime]=\sum_{i=1}^{n-1}E[W_i]\leq n\sum_{i=1}^{n-1}
- \frac{1}{n-i+2}=n\sum_{i=3}^{n+1}\frac{1}{i}.$$
-
-But $\sum_{i=1}^{n+1}\frac{1}{i}\leq 1+\ln(n+1)$. It follows that
-$1+\frac{1}{2}+\sum_{i=3}^{n+1}\frac{1}{i}\leq 1+\ln(n+1).$
+ obtaining a new fair bit is either $1-\frac{i-1}{{\mathsf{N}}}$ if $h(X)$ is fair,
+ or $1-\frac{i-2}{{\mathsf{N}}}$ if $h(X)$ is not fair.
+
+Therefore,
+$\P (W_i=k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}}.$
+Consequently, we have $\P(W_i\geq k)\leq \left(\frac{i-1}{{\mathsf{N}}}\right)^{k-1} \frac{{\mathsf{N}}-i+2}{{\mathsf{N}}-i+1}.$
+It follows that $E[W_i]=\sum_{k=1}^{+\infty} \P (W_i\geq k)\leq {\mathsf{N}} \frac{{\mathsf{N}}-i+2}{({\mathsf{N}}-i+1)^2}\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$.
+
+
+
+It follows that
+$E[W_i]\leq \frac{4{\mathsf{N}}}{{\mathsf{N}}-i+2}$. Therefore
+$$E[\ts^\prime]=\sum_{i=1}^{{\mathsf{N}}-1}E[W_i]\leq
+4{\mathsf{N}}\sum_{i=1}^{{\mathsf{N}}-1} \frac{1}{{\mathsf{N}}-i+2}=
+4{\mathsf{N}}\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}.$$
+
+But $\sum_{i=1}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1)$. It follows that
+$1+\frac{1}{2}+\sum_{i=3}^{{\mathsf{N}}+1}\frac{1}{i}\leq 1+\ln({\mathsf{N}}+1).$