\def \ts {\tau_{\rm stop}}
-\newtheorem{Def}{Definition}
-%\newtheorem{Lemma}{\underline{Lemma}}
-\newtheorem{Theo}{Theorem}
-\newtheorem{Corollary}{Corollary}
-\newtheorem{Lemma}{Lemma}
-\newtheorem{proposition}{Proposition}
\newtheorem*{xpl}{Running Example}
\newcommand{\vectornorm}[1]{\ensuremath{\left|\left|#1\right|\right|_2}}
\begin{document}
-\author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrile Heam}
-\address{Institut FEMTO-ST, Université de Franche-Comté, Belfort, France}
+\author{Jean-François Couchot, Christophe Guyeux, Pierre-Cyrille Heam}
+\address{FEMTO-ST Institute, University of Franche-Comté, Belfort, France}
+\keywords{Pseudorandom Number Generator, Theory of Chaos, Markov Matrice, Hamiltonian Path, Mixing Time, Stopping Time, Statistical Test}
+\subjclass{34C28, 37A25,11K45}
\begin{abstract}
This paper is dedicated to the design of chaotic random generators
We propose a theoretical framework proving both the chaotic properties and
that the limit distribution is uniform.
A theoretical bound on the stationary time is given and
-practical experiments show that the generators successfully passe
-the classical statsitcal tests.
+practical experiments show that the generators successfully pass
+the classical statistical tests.
\end{abstract}
\maketitle
\section{Functions with Strongly Connected $\Gamma_{\{b\}}(f)$}\label{sec:SCCfunc}
\input{generating}
-\section{Random walk on the modified Hypercube}\label{sec:hypercube}
+\section{Stopping Time}\label{sec:hypercube}
\input{stopping}
-% Donner la borne du stopping time quand on marche dedans (nouveau).
-% Énoncer le problème de la taille de cette borne
-% (elle est certes finie, mais grande).
-
-
-
-
-%\section{Quality study of the strategy}
-%6) Se pose alors la question de comment générer une stratégie de "bonne qualité". Par exemple, combien de générateurs aléatoires embarquer ? (nouveau)
-
-
\section{Experiments}\label{sec:prng}
\input{prng}
-\JFC{ajouter ici les expérimentations}
+
\section{Conclusion}