-For every $x$, every $\ell$, one has $\P(S_{x,\ell})\leq 2)\geq
-\frac{1}{4n^2}$. Indeed, if $h(x)\neq \ell$, then
-$\P(S_{x,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. If $h(x)=\ell$, then
-$\P(S_{x,\ell}=1)=0$. Let $X_0=x$. Since $\ov{h}$ is square-free,
-$\ov{h}(\ov{h}^{-1}(x))\neq x$. It follows that $(x,\ov{h}^{-1}(x))\in E_h$.
-Therefore $P(X_1=\ov{h}^{-1}(x))=\frac{1}{2n}$. now,
-by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(x))\neq h(x)$. Therefore
-$\P(S_{x,\ell}=2\mid X_1=\ov{h}^{-1}(x))=\frac{1}{2n}$, proving that
-$\P(S_{x,\ell}\leq 2)\geq \frac{1}{4n^2}$.
-
-Therefore, $\P(S_{x,\ell}\geq 2)\leq 1-\frac{1}{4n^2}$. By induction, one
-has, for every $i$, $\P(S_{x,\ell}\geq 2i)\leq
+For every $X$, every $\ell$, one has $\P(S_{X,\ell})\leq 2)\geq
+\frac{1}{4n^2}$. Indeed, if $h(X)\neq \ell$, then
+$\P(S_{X,\ell}=1)=\frac{1}{2n}\geq \frac{1}{4n^2}$. If $h(X)=\ell$, then
+$\P(S_{X,\ell}=1)=0$. Let $X_0=X$. Since $\ov{h}$ is square-free,
+$\ov{h}(\ov{h}^{-1}(X))\neq X$. It follows that $(X,\ov{h}^{-1}(X))\in E_h$.
+Therefore $P(X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$. now,
+by Lemma~\ref{lm:h}, $h(\ov{h}^{-1}(X))\neq h(X)$. Therefore
+$\P(S_{X,\ell}=2\mid X_1=\ov{h}^{-1}(X))=\frac{1}{2n}$, proving that
+$\P(S_{X,\ell}\leq 2)\geq \frac{1}{4n^2}$.
+
+Therefore, $\P(S_{X,\ell}\geq 2)\leq 1-\frac{1}{4n^2}$. By induction, one
+has, for every $i$, $\P(S_{X,\ell}\geq 2i)\leq